Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses
To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually p...
Gespeichert in:
Veröffentlicht in: | Dental materials 2021-12, Vol.37 (12), p.1783-1793 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1793 |
---|---|
container_issue | 12 |
container_start_page | 1783 |
container_title | Dental materials |
container_volume | 37 |
creator | Bergamo, Edmara T.P. Yamaguchi, Satoshi Lopes, Adolfo C.O. Coelho, Paulo G. de Araújo-Júnior, Everardo N.S. Benalcázar Jalkh, Ernesto B. Zahoui, Abbas Bonfante, Estevam A. |
description | To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses.
Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed.
Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location.
Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode. |
doi_str_mv | 10.1016/j.dental.2021.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578147810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564121002633</els_id><sourcerecordid>2578147810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERW8Lb4CQJTZsEsbOr1kgVRUFpErtAtaWY4_BlyQOdkLVd-hDM1e3sGDBwrJlf3PmeA5jLwWUAkT7dl86nFczlhKkKEGVAP0TthN9pwoA1T1lOxCgiqatxSk7y3kPALVU4hk7reqm70UFO_Zwi8nHNJnZIo-e2xTv5swtTiSOjseZG-7DgKlIGGZCLd3aOC0xhxW5T2bCu5h-8KbY5rDyMC2jmdcib8sS00FiSTGv3zFjfsfDzHMYg43czI57s4ZvG9LZjPf0_pydeDNmfPG4n7OvVx--XH4qrm8-fr68uC5spWAt6kFI5a1pm6pxoHpZ173vle3pq8qo1quhQetlhc5756BSsuugGtQAHqyU1Tl7c9Qlaz83zKueQrY4knGMW9ay6XpR0wJCX_-D7uOWyC9RraxIu246ouojRePLOaHXSwqTSfdagD6kpff6mJY-pKVBaUqLyl49im_DhO5v0Z94CHh_BJCm8Stg0tkGpKhcSGhX7WL4f4ff9Rmp4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623039457</pqid></control><display><type>article</type><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creator><creatorcontrib>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creatorcontrib><description>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses.
Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed.
Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location.
Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2021.09.008</identifier><identifier>PMID: 34588130</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Accelerated life tests ; Biomechanics ; Ceramics ; Crowns ; Datasets ; Dental cement ; Dental crowns ; Dental Implants ; Dental materials ; Dental Porcelain ; Dental prosthesis ; Dental Prosthesis, Implant-Supported ; Dental Restoration Failure ; Dental restorative materials ; Dental Stress Analysis ; Failure modes ; Fatigue cracks ; Fiber composites ; Fiber-reinforced composite ; Finite element method ; Humans ; Materials fatigue ; Materials Testing ; Mathematical analysis ; Prostheses ; Prosthetics ; Reliability ; Reproducibility of Results ; Resin-matrix ceramics ; Survival ; Teeth</subject><ispartof>Dental materials, 2021-12, Vol.37 (12), p.1783-1793</ispartof><rights>2021 The Academy of Dental Materials</rights><rights>Copyright © 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</citedby><cites>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dental.2021.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34588130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Yamaguchi, Satoshi</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses.
Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed.
Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location.
Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</description><subject>Accelerated life tests</subject><subject>Biomechanics</subject><subject>Ceramics</subject><subject>Crowns</subject><subject>Datasets</subject><subject>Dental cement</subject><subject>Dental crowns</subject><subject>Dental Implants</subject><subject>Dental materials</subject><subject>Dental Porcelain</subject><subject>Dental prosthesis</subject><subject>Dental Prosthesis, Implant-Supported</subject><subject>Dental Restoration Failure</subject><subject>Dental restorative materials</subject><subject>Dental Stress Analysis</subject><subject>Failure modes</subject><subject>Fatigue cracks</subject><subject>Fiber composites</subject><subject>Fiber-reinforced composite</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Materials fatigue</subject><subject>Materials Testing</subject><subject>Mathematical analysis</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Resin-matrix ceramics</subject><subject>Survival</subject><subject>Teeth</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS1ERW8Lb4CQJTZsEsbOr1kgVRUFpErtAtaWY4_BlyQOdkLVd-hDM1e3sGDBwrJlf3PmeA5jLwWUAkT7dl86nFczlhKkKEGVAP0TthN9pwoA1T1lOxCgiqatxSk7y3kPALVU4hk7reqm70UFO_Zwi8nHNJnZIo-e2xTv5swtTiSOjseZG-7DgKlIGGZCLd3aOC0xhxW5T2bCu5h-8KbY5rDyMC2jmdcib8sS00FiSTGv3zFjfsfDzHMYg43czI57s4ZvG9LZjPf0_pydeDNmfPG4n7OvVx--XH4qrm8-fr68uC5spWAt6kFI5a1pm6pxoHpZ173vle3pq8qo1quhQetlhc5756BSsuugGtQAHqyU1Tl7c9Qlaz83zKueQrY4knGMW9ay6XpR0wJCX_-D7uOWyC9RraxIu246ouojRePLOaHXSwqTSfdagD6kpff6mJY-pKVBaUqLyl49im_DhO5v0Z94CHh_BJCm8Stg0tkGpKhcSGhX7WL4f4ff9Rmp4g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bergamo, Edmara T.P.</creator><creator>Yamaguchi, Satoshi</creator><creator>Lopes, Adolfo C.O.</creator><creator>Coelho, Paulo G.</creator><creator>de Araújo-Júnior, Everardo N.S.</creator><creator>Benalcázar Jalkh, Ernesto B.</creator><creator>Zahoui, Abbas</creator><creator>Bonfante, Estevam A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><author>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated life tests</topic><topic>Biomechanics</topic><topic>Ceramics</topic><topic>Crowns</topic><topic>Datasets</topic><topic>Dental cement</topic><topic>Dental crowns</topic><topic>Dental Implants</topic><topic>Dental materials</topic><topic>Dental Porcelain</topic><topic>Dental prosthesis</topic><topic>Dental Prosthesis, Implant-Supported</topic><topic>Dental Restoration Failure</topic><topic>Dental restorative materials</topic><topic>Dental Stress Analysis</topic><topic>Failure modes</topic><topic>Fatigue cracks</topic><topic>Fiber composites</topic><topic>Fiber-reinforced composite</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Materials fatigue</topic><topic>Materials Testing</topic><topic>Mathematical analysis</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Resin-matrix ceramics</topic><topic>Survival</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Yamaguchi, Satoshi</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergamo, Edmara T.P.</au><au>Yamaguchi, Satoshi</au><au>Lopes, Adolfo C.O.</au><au>Coelho, Paulo G.</au><au>de Araújo-Júnior, Everardo N.S.</au><au>Benalcázar Jalkh, Ernesto B.</au><au>Zahoui, Abbas</au><au>Bonfante, Estevam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2021-12</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1783</spage><epage>1793</epage><pages>1783-1793</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses.
Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed.
Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location.
Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>34588130</pmid><doi>10.1016/j.dental.2021.09.008</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0109-5641 |
ispartof | Dental materials, 2021-12, Vol.37 (12), p.1783-1793 |
issn | 0109-5641 1879-0097 |
language | eng |
recordid | cdi_proquest_miscellaneous_2578147810 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Accelerated life tests Biomechanics Ceramics Crowns Datasets Dental cement Dental crowns Dental Implants Dental materials Dental Porcelain Dental prosthesis Dental Prosthesis, Implant-Supported Dental Restoration Failure Dental restorative materials Dental Stress Analysis Failure modes Fatigue cracks Fiber composites Fiber-reinforced composite Finite element method Humans Materials fatigue Materials Testing Mathematical analysis Prostheses Prosthetics Reliability Reproducibility of Results Resin-matrix ceramics Survival Teeth |
title | Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20crowns%20cemented%20on%20a%20fiber-reinforced%20composite%20framework%205-unit%20implant-supported%20prostheses:%20in%20silico%20and%20fatigue%20analyses&rft.jtitle=Dental%20materials&rft.au=Bergamo,%20Edmara%20T.P.&rft.date=2021-12&rft.volume=37&rft.issue=12&rft.spage=1783&rft.epage=1793&rft.pages=1783-1793&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2021.09.008&rft_dat=%3Cproquest_cross%3E2578147810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623039457&rft_id=info:pmid/34588130&rft_els_id=S0109564121002633&rfr_iscdi=true |