Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses

To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dental materials 2021-12, Vol.37 (12), p.1783-1793
Hauptverfasser: Bergamo, Edmara T.P., Yamaguchi, Satoshi, Lopes, Adolfo C.O., Coelho, Paulo G., de Araújo-Júnior, Everardo N.S., Benalcázar Jalkh, Ernesto B., Zahoui, Abbas, Bonfante, Estevam A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1793
container_issue 12
container_start_page 1783
container_title Dental materials
container_volume 37
creator Bergamo, Edmara T.P.
Yamaguchi, Satoshi
Lopes, Adolfo C.O.
Coelho, Paulo G.
de Araújo-Júnior, Everardo N.S.
Benalcázar Jalkh, Ernesto B.
Zahoui, Abbas
Bonfante, Estevam A.
description To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.
doi_str_mv 10.1016/j.dental.2021.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2578147810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0109564121002633</els_id><sourcerecordid>2578147810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1ERW8Lb4CQJTZsEsbOr1kgVRUFpErtAtaWY4_BlyQOdkLVd-hDM1e3sGDBwrJlf3PmeA5jLwWUAkT7dl86nFczlhKkKEGVAP0TthN9pwoA1T1lOxCgiqatxSk7y3kPALVU4hk7reqm70UFO_Zwi8nHNJnZIo-e2xTv5swtTiSOjseZG-7DgKlIGGZCLd3aOC0xhxW5T2bCu5h-8KbY5rDyMC2jmdcib8sS00FiSTGv3zFjfsfDzHMYg43czI57s4ZvG9LZjPf0_pydeDNmfPG4n7OvVx--XH4qrm8-fr68uC5spWAt6kFI5a1pm6pxoHpZ173vle3pq8qo1quhQetlhc5756BSsuugGtQAHqyU1Tl7c9Qlaz83zKueQrY4knGMW9ay6XpR0wJCX_-D7uOWyC9RraxIu246ouojRePLOaHXSwqTSfdagD6kpff6mJY-pKVBaUqLyl49im_DhO5v0Z94CHh_BJCm8Stg0tkGpKhcSGhX7WL4f4ff9Rmp4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623039457</pqid></control><display><type>article</type><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creator><creatorcontrib>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</creatorcontrib><description>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</description><identifier>ISSN: 0109-5641</identifier><identifier>EISSN: 1879-0097</identifier><identifier>DOI: 10.1016/j.dental.2021.09.008</identifier><identifier>PMID: 34588130</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Accelerated life tests ; Biomechanics ; Ceramics ; Crowns ; Datasets ; Dental cement ; Dental crowns ; Dental Implants ; Dental materials ; Dental Porcelain ; Dental prosthesis ; Dental Prosthesis, Implant-Supported ; Dental Restoration Failure ; Dental restorative materials ; Dental Stress Analysis ; Failure modes ; Fatigue cracks ; Fiber composites ; Fiber-reinforced composite ; Finite element method ; Humans ; Materials fatigue ; Materials Testing ; Mathematical analysis ; Prostheses ; Prosthetics ; Reliability ; Reproducibility of Results ; Resin-matrix ceramics ; Survival ; Teeth</subject><ispartof>Dental materials, 2021-12, Vol.37 (12), p.1783-1793</ispartof><rights>2021 The Academy of Dental Materials</rights><rights>Copyright © 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</citedby><cites>FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dental.2021.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34588130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Yamaguchi, Satoshi</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><title>Dental materials</title><addtitle>Dent Mater</addtitle><description>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</description><subject>Accelerated life tests</subject><subject>Biomechanics</subject><subject>Ceramics</subject><subject>Crowns</subject><subject>Datasets</subject><subject>Dental cement</subject><subject>Dental crowns</subject><subject>Dental Implants</subject><subject>Dental materials</subject><subject>Dental Porcelain</subject><subject>Dental prosthesis</subject><subject>Dental Prosthesis, Implant-Supported</subject><subject>Dental Restoration Failure</subject><subject>Dental restorative materials</subject><subject>Dental Stress Analysis</subject><subject>Failure modes</subject><subject>Fatigue cracks</subject><subject>Fiber composites</subject><subject>Fiber-reinforced composite</subject><subject>Finite element method</subject><subject>Humans</subject><subject>Materials fatigue</subject><subject>Materials Testing</subject><subject>Mathematical analysis</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Resin-matrix ceramics</subject><subject>Survival</subject><subject>Teeth</subject><issn>0109-5641</issn><issn>1879-0097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1TAQhS1ERW8Lb4CQJTZsEsbOr1kgVRUFpErtAtaWY4_BlyQOdkLVd-hDM1e3sGDBwrJlf3PmeA5jLwWUAkT7dl86nFczlhKkKEGVAP0TthN9pwoA1T1lOxCgiqatxSk7y3kPALVU4hk7reqm70UFO_Zwi8nHNJnZIo-e2xTv5swtTiSOjseZG-7DgKlIGGZCLd3aOC0xhxW5T2bCu5h-8KbY5rDyMC2jmdcib8sS00FiSTGv3zFjfsfDzHMYg43czI57s4ZvG9LZjPf0_pydeDNmfPG4n7OvVx--XH4qrm8-fr68uC5spWAt6kFI5a1pm6pxoHpZ173vle3pq8qo1quhQetlhc5756BSsuugGtQAHqyU1Tl7c9Qlaz83zKueQrY4knGMW9ay6XpR0wJCX_-D7uOWyC9RraxIu246ouojRePLOaHXSwqTSfdagD6kpff6mJY-pKVBaUqLyl49im_DhO5v0Z94CHh_BJCm8Stg0tkGpKhcSGhX7WL4f4ff9Rmp4g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bergamo, Edmara T.P.</creator><creator>Yamaguchi, Satoshi</creator><creator>Lopes, Adolfo C.O.</creator><creator>Coelho, Paulo G.</creator><creator>de Araújo-Júnior, Everardo N.S.</creator><creator>Benalcázar Jalkh, Ernesto B.</creator><creator>Zahoui, Abbas</creator><creator>Bonfante, Estevam A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202112</creationdate><title>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</title><author>Bergamo, Edmara T.P. ; Yamaguchi, Satoshi ; Lopes, Adolfo C.O. ; Coelho, Paulo G. ; de Araújo-Júnior, Everardo N.S. ; Benalcázar Jalkh, Ernesto B. ; Zahoui, Abbas ; Bonfante, Estevam A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4b129fca6535d0982448f89c85649a96f9b5ecf23edffdd03927703b9b0f0c223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerated life tests</topic><topic>Biomechanics</topic><topic>Ceramics</topic><topic>Crowns</topic><topic>Datasets</topic><topic>Dental cement</topic><topic>Dental crowns</topic><topic>Dental Implants</topic><topic>Dental materials</topic><topic>Dental Porcelain</topic><topic>Dental prosthesis</topic><topic>Dental Prosthesis, Implant-Supported</topic><topic>Dental Restoration Failure</topic><topic>Dental restorative materials</topic><topic>Dental Stress Analysis</topic><topic>Failure modes</topic><topic>Fatigue cracks</topic><topic>Fiber composites</topic><topic>Fiber-reinforced composite</topic><topic>Finite element method</topic><topic>Humans</topic><topic>Materials fatigue</topic><topic>Materials Testing</topic><topic>Mathematical analysis</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Resin-matrix ceramics</topic><topic>Survival</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergamo, Edmara T.P.</creatorcontrib><creatorcontrib>Yamaguchi, Satoshi</creatorcontrib><creatorcontrib>Lopes, Adolfo C.O.</creatorcontrib><creatorcontrib>Coelho, Paulo G.</creatorcontrib><creatorcontrib>de Araújo-Júnior, Everardo N.S.</creatorcontrib><creatorcontrib>Benalcázar Jalkh, Ernesto B.</creatorcontrib><creatorcontrib>Zahoui, Abbas</creatorcontrib><creatorcontrib>Bonfante, Estevam A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Dental materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergamo, Edmara T.P.</au><au>Yamaguchi, Satoshi</au><au>Lopes, Adolfo C.O.</au><au>Coelho, Paulo G.</au><au>de Araújo-Júnior, Everardo N.S.</au><au>Benalcázar Jalkh, Ernesto B.</au><au>Zahoui, Abbas</au><au>Bonfante, Estevam A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses</atitle><jtitle>Dental materials</jtitle><addtitle>Dent Mater</addtitle><date>2021-12</date><risdate>2021</risdate><volume>37</volume><issue>12</issue><spage>1783</spage><epage>1793</epage><pages>1783-1793</pages><issn>0109-5641</issn><eissn>1879-0097</eissn><abstract>To characterize the biomechanical performance of fiber-reinforced composite 5-unit implant-supported fixed dental prostheses (FDPs) receiving individually milled crowns by insilico and fatigue analyses. Eighteen implant-supported five-unit fiber-reinforced composite frameworks with an individually prepared abutment design were fabricated, and ninety resin-matrix ceramic crowns were milled to fit each abutment. FDPs were subjected to step-stress accelerated-life testing with load delivered at the center of the pontic and at 2nd molar and 1st premolar until failure. The reliability of the prostheses combining all loaded data and of each loaded tooth was estimated for a mission of 50,000 cycles at 300, 600 and 900 N. Weibull parameters were calculated and plotted. Fractographic and finite element analysis were performed. Fatigue analysis demonstrated high probability of survival at 300 N, with no significant differences when the set load was increased to 600 and 900 N. 1st and 2nd molar dataset showed high reliability at 300 N, which remained high for the higher load missions; whereas 1st premolar dataset showed a significant decrease when the reliability at 300 N was compared to higher load missions. The characteristic-strength of the combined dataset was 1252 N, with 1st molar dataset presenting higher values relative to 2nd molar and 1st premolar, both significantly different. Failure modes comprised chiefly cohesive fracture within the crown material originated from cracks at the occlusal area, matching the maximum principal strain location. Five-unit implant-supported FDP with crowns individually cemented in a fiber-reinforced composite framework presented a high survival probability. Crown fracture comprised the main failure mode.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>34588130</pmid><doi>10.1016/j.dental.2021.09.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0109-5641
ispartof Dental materials, 2021-12, Vol.37 (12), p.1783-1793
issn 0109-5641
1879-0097
language eng
recordid cdi_proquest_miscellaneous_2578147810
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Accelerated life tests
Biomechanics
Ceramics
Crowns
Datasets
Dental cement
Dental crowns
Dental Implants
Dental materials
Dental Porcelain
Dental prosthesis
Dental Prosthesis, Implant-Supported
Dental Restoration Failure
Dental restorative materials
Dental Stress Analysis
Failure modes
Fatigue cracks
Fiber composites
Fiber-reinforced composite
Finite element method
Humans
Materials fatigue
Materials Testing
Mathematical analysis
Prostheses
Prosthetics
Reliability
Reproducibility of Results
Resin-matrix ceramics
Survival
Teeth
title Performance of crowns cemented on a fiber-reinforced composite framework 5-unit implant-supported prostheses: in silico and fatigue analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20crowns%20cemented%20on%20a%20fiber-reinforced%20composite%20framework%205-unit%20implant-supported%20prostheses:%20in%20silico%20and%20fatigue%20analyses&rft.jtitle=Dental%20materials&rft.au=Bergamo,%20Edmara%20T.P.&rft.date=2021-12&rft.volume=37&rft.issue=12&rft.spage=1783&rft.epage=1793&rft.pages=1783-1793&rft.issn=0109-5641&rft.eissn=1879-0097&rft_id=info:doi/10.1016/j.dental.2021.09.008&rft_dat=%3Cproquest_cross%3E2578147810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623039457&rft_id=info:pmid/34588130&rft_els_id=S0109564121002633&rfr_iscdi=true