Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies

To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mayo Clinic proceedings 2021-12, Vol.96 (12), p.3071-3085
Hauptverfasser: Petrovic, Dusan, Pruijm, Menno, Ponte, Belén, Dhayat, Nasser A., Ackermann, Daniel, Ehret, Georg, Ansermot, Nicolas, Vogt, Bruno, Martin, Pierre-Yves, Stringhini, Silvia, Estoppey-Younès, Sandrine, Thijs, Lutgarde, Zhang, Zhenyu, Melgarejo, Jesus D., Eap, Chin B., Staessen, Jan A., Bochud, Murielle, Guessous, Idris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3085
container_issue 12
container_start_page 3071
container_title Mayo Clinic proceedings
container_volume 96
creator Petrovic, Dusan
Pruijm, Menno
Ponte, Belén
Dhayat, Nasser A.
Ackermann, Daniel
Ehret, Georg
Ansermot, Nicolas
Vogt, Bruno
Martin, Pierre-Yves
Stringhini, Silvia
Estoppey-Younès, Sandrine
Thijs, Lutgarde
Zhang, Zhenyu
Melgarejo, Jesus D.
Eap, Chin B.
Staessen, Jan A.
Bochud, Murielle
Guessous, Idris
description To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines—caffeine, paraxanthine, theobromine, and theophylline—using ultra-high-performance liquid chromatography–tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders. In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants. Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.
doi_str_mv 10.1016/j.mayocp.2021.05.030
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2577450159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A689992344</galeid><els_id>S0025619621005516</els_id><sourcerecordid>A689992344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-6be6b1b3f9a049ca992897ff5cdcb6c2f66a3c5711ec59214956189963d69a913</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCP0DIK8QmwXZsZ7xBagcKlQZR8VhbjnMz41Fip7EzqP8eDykINsgLP_Sd43vvQegFJSUlVL45lIO5D3YsGWG0JKIkFXmEVlRxVgjB5WO0IoSJQlIlz9B5jAdCSK0Uf4rOKi5OJ7FC440_QkxuZ5LzO5z2gL9Any_BR3wF6QeAxxvTdeA8FO9gckdo8SdIpgm9SxCx8S2-7U0cDN660bURO48Zvg3jvPgUVyZmzdc0tw7iM_SkM32E5w_7Bfp-_f7b5mOx_fzhZnO5LSyv16mQDciGNlWnDOHKGqXYWtVdJ2xrG2lZJ6WprKgpBSsUo1wJSddKyaqVyihaXaDXi-84hbs5t6gHFy30vfEQ5qiZqGsuCBUqo-WC7kwP2vkupMnYvFoYnA0eOpffL2W2V6ziPAte_SXYg-nTPoZ-_jW1f0G-gHYKMU7Q6XFyg5nuNSX6lKI-6CVFfUpRE6Fziln28qH2uRmg_SP6HVsG3i4A5AkeHUw6WgfeQusmsEm3wf3_h5_pzK8-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577450159</pqid></control><display><type>article</type><title>Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Petrovic, Dusan ; Pruijm, Menno ; Ponte, Belén ; Dhayat, Nasser A. ; Ackermann, Daniel ; Ehret, Georg ; Ansermot, Nicolas ; Vogt, Bruno ; Martin, Pierre-Yves ; Stringhini, Silvia ; Estoppey-Younès, Sandrine ; Thijs, Lutgarde ; Zhang, Zhenyu ; Melgarejo, Jesus D. ; Eap, Chin B. ; Staessen, Jan A. ; Bochud, Murielle ; Guessous, Idris</creator><creatorcontrib>Petrovic, Dusan ; Pruijm, Menno ; Ponte, Belén ; Dhayat, Nasser A. ; Ackermann, Daniel ; Ehret, Georg ; Ansermot, Nicolas ; Vogt, Bruno ; Martin, Pierre-Yves ; Stringhini, Silvia ; Estoppey-Younès, Sandrine ; Thijs, Lutgarde ; Zhang, Zhenyu ; Melgarejo, Jesus D. ; Eap, Chin B. ; Staessen, Jan A. ; Bochud, Murielle ; Guessous, Idris</creatorcontrib><description>To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines—caffeine, paraxanthine, theobromine, and theophylline—using ultra-high-performance liquid chromatography–tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders. In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants. Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.</description><identifier>ISSN: 0025-6196</identifier><identifier>EISSN: 1942-5546</identifier><identifier>DOI: 10.1016/j.mayocp.2021.05.030</identifier><identifier>PMID: 34579945</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Adult ; Belgium ; Caffeine ; Caffeine - adverse effects ; Caffeine - blood ; Caffeine - metabolism ; Caffeine - urine ; Cholesterol - blood ; Cholesterol, HDL - blood ; Chromatography, High Pressure Liquid ; Complications and side effects ; Coronary heart disease ; Dyslipidemias ; Female ; Health aspects ; Humans ; Lipids - blood ; Male ; Metabolites ; Middle Aged ; Risk factors ; Switzerland ; Tandem Mass Spectrometry ; Theobromine - adverse effects ; Theobromine - blood ; Theobromine - urine ; Theophylline - adverse effects ; Theophylline - blood ; Theophylline - urine ; Triglycerides - blood ; Xanthines - adverse effects ; Xanthines - blood ; Xanthines - urine</subject><ispartof>Mayo Clinic proceedings, 2021-12, Vol.96 (12), p.3071-3085</ispartof><rights>2021 Mayo Foundation for Medical Education and Research</rights><rights>Copyright © 2021 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.</rights><rights>COPYRIGHT 2021 Elsevier, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-6be6b1b3f9a049ca992897ff5cdcb6c2f66a3c5711ec59214956189963d69a913</citedby><cites>FETCH-LOGICAL-c478t-6be6b1b3f9a049ca992897ff5cdcb6c2f66a3c5711ec59214956189963d69a913</cites><orcidid>0000-0003-4730-6050 ; 0000-0003-3684-4582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34579945$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petrovic, Dusan</creatorcontrib><creatorcontrib>Pruijm, Menno</creatorcontrib><creatorcontrib>Ponte, Belén</creatorcontrib><creatorcontrib>Dhayat, Nasser A.</creatorcontrib><creatorcontrib>Ackermann, Daniel</creatorcontrib><creatorcontrib>Ehret, Georg</creatorcontrib><creatorcontrib>Ansermot, Nicolas</creatorcontrib><creatorcontrib>Vogt, Bruno</creatorcontrib><creatorcontrib>Martin, Pierre-Yves</creatorcontrib><creatorcontrib>Stringhini, Silvia</creatorcontrib><creatorcontrib>Estoppey-Younès, Sandrine</creatorcontrib><creatorcontrib>Thijs, Lutgarde</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Melgarejo, Jesus D.</creatorcontrib><creatorcontrib>Eap, Chin B.</creatorcontrib><creatorcontrib>Staessen, Jan A.</creatorcontrib><creatorcontrib>Bochud, Murielle</creatorcontrib><creatorcontrib>Guessous, Idris</creatorcontrib><title>Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies</title><title>Mayo Clinic proceedings</title><addtitle>Mayo Clin Proc</addtitle><description>To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines—caffeine, paraxanthine, theobromine, and theophylline—using ultra-high-performance liquid chromatography–tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders. In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants. Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.</description><subject>Adult</subject><subject>Belgium</subject><subject>Caffeine</subject><subject>Caffeine - adverse effects</subject><subject>Caffeine - blood</subject><subject>Caffeine - metabolism</subject><subject>Caffeine - urine</subject><subject>Cholesterol - blood</subject><subject>Cholesterol, HDL - blood</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Complications and side effects</subject><subject>Coronary heart disease</subject><subject>Dyslipidemias</subject><subject>Female</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Lipids - blood</subject><subject>Male</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Risk factors</subject><subject>Switzerland</subject><subject>Tandem Mass Spectrometry</subject><subject>Theobromine - adverse effects</subject><subject>Theobromine - blood</subject><subject>Theobromine - urine</subject><subject>Theophylline - adverse effects</subject><subject>Theophylline - blood</subject><subject>Theophylline - urine</subject><subject>Triglycerides - blood</subject><subject>Xanthines - adverse effects</subject><subject>Xanthines - blood</subject><subject>Xanthines - urine</subject><issn>0025-6196</issn><issn>1942-5546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EotPCP0DIK8QmwXZsZ7xBagcKlQZR8VhbjnMz41Fip7EzqP8eDykINsgLP_Sd43vvQegFJSUlVL45lIO5D3YsGWG0JKIkFXmEVlRxVgjB5WO0IoSJQlIlz9B5jAdCSK0Uf4rOKi5OJ7FC440_QkxuZ5LzO5z2gL9Any_BR3wF6QeAxxvTdeA8FO9gckdo8SdIpgm9SxCx8S2-7U0cDN660bURO48Zvg3jvPgUVyZmzdc0tw7iM_SkM32E5w_7Bfp-_f7b5mOx_fzhZnO5LSyv16mQDciGNlWnDOHKGqXYWtVdJ2xrG2lZJ6WprKgpBSsUo1wJSddKyaqVyihaXaDXi-84hbs5t6gHFy30vfEQ5qiZqGsuCBUqo-WC7kwP2vkupMnYvFoYnA0eOpffL2W2V6ziPAte_SXYg-nTPoZ-_jW1f0G-gHYKMU7Q6XFyg5nuNSX6lKI-6CVFfUpRE6Fziln28qH2uRmg_SP6HVsG3i4A5AkeHUw6WgfeQusmsEm3wf3_h5_pzK8-</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Petrovic, Dusan</creator><creator>Pruijm, Menno</creator><creator>Ponte, Belén</creator><creator>Dhayat, Nasser A.</creator><creator>Ackermann, Daniel</creator><creator>Ehret, Georg</creator><creator>Ansermot, Nicolas</creator><creator>Vogt, Bruno</creator><creator>Martin, Pierre-Yves</creator><creator>Stringhini, Silvia</creator><creator>Estoppey-Younès, Sandrine</creator><creator>Thijs, Lutgarde</creator><creator>Zhang, Zhenyu</creator><creator>Melgarejo, Jesus D.</creator><creator>Eap, Chin B.</creator><creator>Staessen, Jan A.</creator><creator>Bochud, Murielle</creator><creator>Guessous, Idris</creator><general>Elsevier Inc</general><general>Elsevier, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4730-6050</orcidid><orcidid>https://orcid.org/0000-0003-3684-4582</orcidid></search><sort><creationdate>202112</creationdate><title>Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies</title><author>Petrovic, Dusan ; Pruijm, Menno ; Ponte, Belén ; Dhayat, Nasser A. ; Ackermann, Daniel ; Ehret, Georg ; Ansermot, Nicolas ; Vogt, Bruno ; Martin, Pierre-Yves ; Stringhini, Silvia ; Estoppey-Younès, Sandrine ; Thijs, Lutgarde ; Zhang, Zhenyu ; Melgarejo, Jesus D. ; Eap, Chin B. ; Staessen, Jan A. ; Bochud, Murielle ; Guessous, Idris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-6be6b1b3f9a049ca992897ff5cdcb6c2f66a3c5711ec59214956189963d69a913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Belgium</topic><topic>Caffeine</topic><topic>Caffeine - adverse effects</topic><topic>Caffeine - blood</topic><topic>Caffeine - metabolism</topic><topic>Caffeine - urine</topic><topic>Cholesterol - blood</topic><topic>Cholesterol, HDL - blood</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Complications and side effects</topic><topic>Coronary heart disease</topic><topic>Dyslipidemias</topic><topic>Female</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Lipids - blood</topic><topic>Male</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Risk factors</topic><topic>Switzerland</topic><topic>Tandem Mass Spectrometry</topic><topic>Theobromine - adverse effects</topic><topic>Theobromine - blood</topic><topic>Theobromine - urine</topic><topic>Theophylline - adverse effects</topic><topic>Theophylline - blood</topic><topic>Theophylline - urine</topic><topic>Triglycerides - blood</topic><topic>Xanthines - adverse effects</topic><topic>Xanthines - blood</topic><topic>Xanthines - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petrovic, Dusan</creatorcontrib><creatorcontrib>Pruijm, Menno</creatorcontrib><creatorcontrib>Ponte, Belén</creatorcontrib><creatorcontrib>Dhayat, Nasser A.</creatorcontrib><creatorcontrib>Ackermann, Daniel</creatorcontrib><creatorcontrib>Ehret, Georg</creatorcontrib><creatorcontrib>Ansermot, Nicolas</creatorcontrib><creatorcontrib>Vogt, Bruno</creatorcontrib><creatorcontrib>Martin, Pierre-Yves</creatorcontrib><creatorcontrib>Stringhini, Silvia</creatorcontrib><creatorcontrib>Estoppey-Younès, Sandrine</creatorcontrib><creatorcontrib>Thijs, Lutgarde</creatorcontrib><creatorcontrib>Zhang, Zhenyu</creatorcontrib><creatorcontrib>Melgarejo, Jesus D.</creatorcontrib><creatorcontrib>Eap, Chin B.</creatorcontrib><creatorcontrib>Staessen, Jan A.</creatorcontrib><creatorcontrib>Bochud, Murielle</creatorcontrib><creatorcontrib>Guessous, Idris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Mayo Clinic proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petrovic, Dusan</au><au>Pruijm, Menno</au><au>Ponte, Belén</au><au>Dhayat, Nasser A.</au><au>Ackermann, Daniel</au><au>Ehret, Georg</au><au>Ansermot, Nicolas</au><au>Vogt, Bruno</au><au>Martin, Pierre-Yves</au><au>Stringhini, Silvia</au><au>Estoppey-Younès, Sandrine</au><au>Thijs, Lutgarde</au><au>Zhang, Zhenyu</au><au>Melgarejo, Jesus D.</au><au>Eap, Chin B.</au><au>Staessen, Jan A.</au><au>Bochud, Murielle</au><au>Guessous, Idris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies</atitle><jtitle>Mayo Clinic proceedings</jtitle><addtitle>Mayo Clin Proc</addtitle><date>2021-12</date><risdate>2021</risdate><volume>96</volume><issue>12</issue><spage>3071</spage><epage>3085</epage><pages>3071-3085</pages><issn>0025-6196</issn><eissn>1942-5546</eissn><abstract>To investigate the relations between caffeine-derived metabolites (methylxanthines) and plasma lipids by use of population-based data from 2 European countries. Families were randomly selected from the general population of northern Belgium (FLEMENGHO), from August 12, 1985, until November 22, 1990, and 3 Swiss cities (SKIPOGH), from November 25, 2009, through April 4, 2013. We measured plasma concentrations (FLEMENGHO, SKIPOGH) and 24-hour urinary excretions (SKIPOGH) of 4 methylxanthines—caffeine, paraxanthine, theobromine, and theophylline—using ultra-high-performance liquid chromatography–tandem mass spectrometry. We used enzymatic methods to estimate total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels and the Friedewald equation for low-density lipoprotein cholesterol levels in plasma. We applied sex-specific mixed models to investigate associations between methylxanthines and plasma lipids, adjusting for major confounders. In both FLEMENGHO (N=1987; 1055 [53%] female participants) and SKIPOGH (N=990; 523 [53%] female participants), total cholesterol, low-density lipoprotein cholesterol, and triglyceride levels increased across quartiles of plasma caffeine, paraxanthine, and theophylline (total cholesterol levels by caffeine quartiles in FLEMENGHO, male participants: 5.01±0.06 mmol/L, 5.05±0.06 mmol/L, 5.27±0.06 mmol/L, 5.62±0.06 mmol/L; female participants: 5.24±0.06 mmol/L, 5.15±0.05 mmol/L, 5.25±0.05 mmol/L, 5.42±0.05 mmol/L). Similar results were observed using urinary methylxanthines in SKIPOGH (total cholesterol levels by caffeine quartiles, male participants: 4.54±0.08 mmol/L, 4.94±0.08 mmol/L, 4.87±0.08 mmol/L, 5.27±0.09 mmol/L; female participants: 5.12±0.07 mmol/L, 5.21±0.07 mmol/L, 5.28±0.05 mmol/L, 5.28±0.07 mmol/L). Furthermore, urinary caffeine and theophylline were positively associated with high-density lipoprotein cholesterol in SKIPOGH male participants. Plasma and urinary caffeine, paraxanthine, and theophylline were positively associated with plasma lipids, whereas the associations involving theobromine were less clear. We postulate that the positive association between caffeine intake and plasma lipids may be related to the sympathomimetic function of methylxanthines, mitigating the overall health-beneficial effect of caffeine intake.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>34579945</pmid><doi>10.1016/j.mayocp.2021.05.030</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4730-6050</orcidid><orcidid>https://orcid.org/0000-0003-3684-4582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-6196
ispartof Mayo Clinic proceedings, 2021-12, Vol.96 (12), p.3071-3085
issn 0025-6196
1942-5546
language eng
recordid cdi_proquest_miscellaneous_2577450159
source MEDLINE; Alma/SFX Local Collection
subjects Adult
Belgium
Caffeine
Caffeine - adverse effects
Caffeine - blood
Caffeine - metabolism
Caffeine - urine
Cholesterol - blood
Cholesterol, HDL - blood
Chromatography, High Pressure Liquid
Complications and side effects
Coronary heart disease
Dyslipidemias
Female
Health aspects
Humans
Lipids - blood
Male
Metabolites
Middle Aged
Risk factors
Switzerland
Tandem Mass Spectrometry
Theobromine - adverse effects
Theobromine - blood
Theobromine - urine
Theophylline - adverse effects
Theophylline - blood
Theophylline - urine
Triglycerides - blood
Xanthines - adverse effects
Xanthines - blood
Xanthines - urine
title Investigating the Relations Between Caffeine-Derived Metabolites and Plasma Lipids in 2 Population-Based Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Relations%20Between%20Caffeine-Derived%20Metabolites%20and%20Plasma%20Lipids%20in%202%20Population-Based%20Studies&rft.jtitle=Mayo%20Clinic%20proceedings&rft.au=Petrovic,%20Dusan&rft.date=2021-12&rft.volume=96&rft.issue=12&rft.spage=3071&rft.epage=3085&rft.pages=3071-3085&rft.issn=0025-6196&rft.eissn=1942-5546&rft_id=info:doi/10.1016/j.mayocp.2021.05.030&rft_dat=%3Cgale_proqu%3EA689992344%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577450159&rft_id=info:pmid/34579945&rft_galeid=A689992344&rft_els_id=S0025619621005516&rfr_iscdi=true