Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies

The high-energy global dynamics of an undamped, strongly non-linear, two-degree-of-freedom system are considered. As shown in an earlier work [A.F. Vakakis and R.H. Rand, Int. J. Non-Linear Mech. 27, 861–874 (1992)], the oscillator under consideration contains “similar” non-linear normal modes and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 1992-09, Vol.27 (5), p.875-888
Hauptverfasser: Vakakis, A.F., Rand, R.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 888
container_issue 5
container_start_page 875
container_title International journal of non-linear mechanics
container_volume 27
creator Vakakis, A.F.
Rand, R.H.
description The high-energy global dynamics of an undamped, strongly non-linear, two-degree-of-freedom system are considered. As shown in an earlier work [A.F. Vakakis and R.H. Rand, Int. J. Non-Linear Mech. 27, 861–874 (1992)], the oscillator under consideration contains “similar” non-linear normal modes and at certain values of its structural parameters a mode bifurcation is possible. For low energies, the mode bifurcation gives rise to a homoclinic orbit in the Poincaré map of the system. For high energies, large- and low-scale chaotic motions are detected, resulting from transverse intersections of the stable and unstable manifolds of an unstable antisymmetric normal mode, and from the breakdown of invariant KAM-tori. The creation of additional free subharmonic motions is studied by a subharmonic Melnikov analysis, and the stability of the subharmonic motions is examined by an averaging methodology. The main conclusion of this work is that the bifurcation of similar normal modes results in a class of large-scale free chaotic motions, which do not exist in the system before the bifurcation.
doi_str_mv 10.1016/0020-7462(92)90041-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25768565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020746292900415</els_id><sourcerecordid>25768565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-ca3d854210f06450a0726daba278dbbe841990671cee0352a97c65ced3ab7eae3</originalsourceid><addsrcrecordid>eNp9kM9qFTEUxoMoeK2-gYssStFFapKZJJNNQYraC0U3dh3OJGduU2aSNplW7s6H8An7JM5wS5eFAx8cft_58xHyUfBTwYX-wrnkzLRafrLys-W8FUy9IhvRmY4p3XSvyeYZeUve1XrDF1vLzYbAz1wmGOmUA1YKKdDdmPulEfYJpugrzQMFOv_JLOCuILI8sGHRkCeacmJjTAiF1n2dcXr8-2-7PaUXcXdNMWHZRazvyZsBxoofnvSIXH3_9vv8gl3--rE9_3rJvDR2Zh6a0KlWCj5w3SoO3EgdoAdputD32LXCWq6N8Ii8URKs8Vp5DA30BgGbI3JymHtb8t091tlNsXocR0iY76uTyuhOabWA7QH0JddacHC3JU5Q9k5wt-bp1rDcGpazS615utV2_DQfqodxKJB8rM9e1VrbcbtgZwcMl18fIhZXfcS0HBoL-tmFHF_e8x_TY4oI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25768565</pqid></control><display><type>article</type><title>Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Vakakis, A.F. ; Rand, R.H.</creator><creatorcontrib>Vakakis, A.F. ; Rand, R.H.</creatorcontrib><description>The high-energy global dynamics of an undamped, strongly non-linear, two-degree-of-freedom system are considered. As shown in an earlier work [A.F. Vakakis and R.H. Rand, Int. J. Non-Linear Mech. 27, 861–874 (1992)], the oscillator under consideration contains “similar” non-linear normal modes and at certain values of its structural parameters a mode bifurcation is possible. For low energies, the mode bifurcation gives rise to a homoclinic orbit in the Poincaré map of the system. For high energies, large- and low-scale chaotic motions are detected, resulting from transverse intersections of the stable and unstable manifolds of an unstable antisymmetric normal mode, and from the breakdown of invariant KAM-tori. The creation of additional free subharmonic motions is studied by a subharmonic Melnikov analysis, and the stability of the subharmonic motions is examined by an averaging methodology. The main conclusion of this work is that the bifurcation of similar normal modes results in a class of large-scale free chaotic motions, which do not exist in the system before the bifurcation.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/0020-7462(92)90041-5</identifier><identifier>CODEN: IJNMAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal of non-linear mechanics, 1992-09, Vol.27 (5), p.875-888</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-ca3d854210f06450a0726daba278dbbe841990671cee0352a97c65ced3ab7eae3</citedby><cites>FETCH-LOGICAL-c279t-ca3d854210f06450a0726daba278dbbe841990671cee0352a97c65ced3ab7eae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0020-7462(92)90041-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5499809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Vakakis, A.F.</creatorcontrib><creatorcontrib>Rand, R.H.</creatorcontrib><title>Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies</title><title>International journal of non-linear mechanics</title><description>The high-energy global dynamics of an undamped, strongly non-linear, two-degree-of-freedom system are considered. As shown in an earlier work [A.F. Vakakis and R.H. Rand, Int. J. Non-Linear Mech. 27, 861–874 (1992)], the oscillator under consideration contains “similar” non-linear normal modes and at certain values of its structural parameters a mode bifurcation is possible. For low energies, the mode bifurcation gives rise to a homoclinic orbit in the Poincaré map of the system. For high energies, large- and low-scale chaotic motions are detected, resulting from transverse intersections of the stable and unstable manifolds of an unstable antisymmetric normal mode, and from the breakdown of invariant KAM-tori. The creation of additional free subharmonic motions is studied by a subharmonic Melnikov analysis, and the stability of the subharmonic motions is examined by an averaging methodology. The main conclusion of this work is that the bifurcation of similar normal modes results in a class of large-scale free chaotic motions, which do not exist in the system before the bifurcation.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kM9qFTEUxoMoeK2-gYssStFFapKZJJNNQYraC0U3dh3OJGduU2aSNplW7s6H8An7JM5wS5eFAx8cft_58xHyUfBTwYX-wrnkzLRafrLys-W8FUy9IhvRmY4p3XSvyeYZeUve1XrDF1vLzYbAz1wmGOmUA1YKKdDdmPulEfYJpugrzQMFOv_JLOCuILI8sGHRkCeacmJjTAiF1n2dcXr8-2-7PaUXcXdNMWHZRazvyZsBxoofnvSIXH3_9vv8gl3--rE9_3rJvDR2Zh6a0KlWCj5w3SoO3EgdoAdputD32LXCWq6N8Ii8URKs8Vp5DA30BgGbI3JymHtb8t091tlNsXocR0iY76uTyuhOabWA7QH0JddacHC3JU5Q9k5wt-bp1rDcGpazS615utV2_DQfqodxKJB8rM9e1VrbcbtgZwcMl18fIhZXfcS0HBoL-tmFHF_e8x_TY4oI</recordid><startdate>19920901</startdate><enddate>19920901</enddate><creator>Vakakis, A.F.</creator><creator>Rand, R.H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>19920901</creationdate><title>Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies</title><author>Vakakis, A.F. ; Rand, R.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-ca3d854210f06450a0726daba278dbbe841990671cee0352a97c65ced3ab7eae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vakakis, A.F.</creatorcontrib><creatorcontrib>Rand, R.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vakakis, A.F.</au><au>Rand, R.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>1992-09-01</date><risdate>1992</risdate><volume>27</volume><issue>5</issue><spage>875</spage><epage>888</epage><pages>875-888</pages><issn>0020-7462</issn><eissn>1878-5638</eissn><coden>IJNMAG</coden><abstract>The high-energy global dynamics of an undamped, strongly non-linear, two-degree-of-freedom system are considered. As shown in an earlier work [A.F. Vakakis and R.H. Rand, Int. J. Non-Linear Mech. 27, 861–874 (1992)], the oscillator under consideration contains “similar” non-linear normal modes and at certain values of its structural parameters a mode bifurcation is possible. For low energies, the mode bifurcation gives rise to a homoclinic orbit in the Poincaré map of the system. For high energies, large- and low-scale chaotic motions are detected, resulting from transverse intersections of the stable and unstable manifolds of an unstable antisymmetric normal mode, and from the breakdown of invariant KAM-tori. The creation of additional free subharmonic motions is studied by a subharmonic Melnikov analysis, and the stability of the subharmonic motions is examined by an averaging methodology. The main conclusion of this work is that the bifurcation of similar normal modes results in a class of large-scale free chaotic motions, which do not exist in the system before the bifurcation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0020-7462(92)90041-5</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 1992-09, Vol.27 (5), p.875-888
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_miscellaneous_25768565
source Access via ScienceDirect (Elsevier)
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T08%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normal%20modes%20and%20global%20dynamics%20of%20a%20two-degree-of-freedom%20non-linear%20system%E2%80%94II.%20High%20energies&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Vakakis,%20A.F.&rft.date=1992-09-01&rft.volume=27&rft.issue=5&rft.spage=875&rft.epage=888&rft.pages=875-888&rft.issn=0020-7462&rft.eissn=1878-5638&rft.coden=IJNMAG&rft_id=info:doi/10.1016/0020-7462(92)90041-5&rft_dat=%3Cproquest_cross%3E25768565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25768565&rft_id=info:pmid/&rft_els_id=0020746292900415&rfr_iscdi=true