Uncoupling of dynamic equations for periodic structures

This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 1990-06, Vol.139 (2), p.253-263
Hauptverfasser: Cai, C.W., Cheung, Y.K., Chan, H.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 263
container_issue 2
container_start_page 253
container_title Journal of sound and vibration
container_volume 139
creator Cai, C.W.
Cheung, Y.K.
Chan, H.C.
description This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.
doi_str_mv 10.1016/0022-460X(90)90886-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25767243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022460X90908865</els_id><sourcerecordid>22057560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw-9KHqoTtombS6CLH7BghcXvIV0OpFIt1mTVth_b9dd9KbMYWB43pnhYeyUwxUHLq8BsiwtJLxeKLhUUFUyFXtswkGJtBKy2meTH-SQHcX4DgCqyIsJKxcd-mHVuu4t8TZp1p1ZOkzoYzC9811MrA_JioLzzTiOfRiwHwLFY3ZgTRvpZNenbHF_9zJ7TOfPD0-z23mKuZJ9iqYyFoxFQ5LbEqQkS2hsYwXySsnGqLoBpIrXlovxcS7GqmVpKCtt3eRTdr7duwr-Y6DY66WLSG1rOvJD1JkoZZkV-f9gBqIUEkaw2IIYfIyBrF4FtzRhrTnojU69caU3rrQC_a1TizF2tttvIprWBtOhi79ZJfJCKTVyN1uORiufjoKO6KhDalwg7HXj3d-HvgClU4qm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22057560</pqid></control><display><type>article</type><title>Uncoupling of dynamic equations for periodic structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</creator><creatorcontrib>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</creatorcontrib><description>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/0022-460X(90)90886-5</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 1990-06, Vol.139 (2), p.253-263</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</citedby><cites>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-460X(90)90886-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19534999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, C.W.</creatorcontrib><creatorcontrib>Cheung, Y.K.</creatorcontrib><creatorcontrib>Chan, H.C.</creatorcontrib><title>Uncoupling of dynamic equations for periodic structures</title><title>Journal of sound and vibration</title><description>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw-9KHqoTtombS6CLH7BghcXvIV0OpFIt1mTVth_b9dd9KbMYWB43pnhYeyUwxUHLq8BsiwtJLxeKLhUUFUyFXtswkGJtBKy2meTH-SQHcX4DgCqyIsJKxcd-mHVuu4t8TZp1p1ZOkzoYzC9811MrA_JioLzzTiOfRiwHwLFY3ZgTRvpZNenbHF_9zJ7TOfPD0-z23mKuZJ9iqYyFoxFQ5LbEqQkS2hsYwXySsnGqLoBpIrXlovxcS7GqmVpKCtt3eRTdr7duwr-Y6DY66WLSG1rOvJD1JkoZZkV-f9gBqIUEkaw2IIYfIyBrF4FtzRhrTnojU69caU3rrQC_a1TizF2tttvIprWBtOhi79ZJfJCKTVyN1uORiufjoKO6KhDalwg7HXj3d-HvgClU4qm</recordid><startdate>19900608</startdate><enddate>19900608</enddate><creator>Cai, C.W.</creator><creator>Cheung, Y.K.</creator><creator>Chan, H.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>F28</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19900608</creationdate><title>Uncoupling of dynamic equations for periodic structures</title><author>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, C.W.</creatorcontrib><creatorcontrib>Cheung, Y.K.</creatorcontrib><creatorcontrib>Chan, H.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, C.W.</au><au>Cheung, Y.K.</au><au>Chan, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling of dynamic equations for periodic structures</atitle><jtitle>Journal of sound and vibration</jtitle><date>1990-06-08</date><risdate>1990</risdate><volume>139</volume><issue>2</issue><spage>253</spage><epage>263</epage><pages>253-263</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/0022-460X(90)90886-5</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 1990-06, Vol.139 (2), p.253-263
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_25767243
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Uncoupling of dynamic equations for periodic structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20of%20dynamic%20equations%20for%20periodic%20structures&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Cai,%20C.W.&rft.date=1990-06-08&rft.volume=139&rft.issue=2&rft.spage=253&rft.epage=263&rft.pages=253-263&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/0022-460X(90)90886-5&rft_dat=%3Cproquest_cross%3E22057560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22057560&rft_id=info:pmid/&rft_els_id=0022460X90908865&rfr_iscdi=true