Uncoupling of dynamic equations for periodic structures
This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 1990-06, Vol.139 (2), p.253-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | 2 |
container_start_page | 253 |
container_title | Journal of sound and vibration |
container_volume | 139 |
creator | Cai, C.W. Cheung, Y.K. Chan, H.C. |
description | This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures. |
doi_str_mv | 10.1016/0022-460X(90)90886-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25767243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0022460X90908865</els_id><sourcerecordid>22057560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-Aw-9KHqoTtombS6CLH7BghcXvIV0OpFIt1mTVth_b9dd9KbMYWB43pnhYeyUwxUHLq8BsiwtJLxeKLhUUFUyFXtswkGJtBKy2meTH-SQHcX4DgCqyIsJKxcd-mHVuu4t8TZp1p1ZOkzoYzC9811MrA_JioLzzTiOfRiwHwLFY3ZgTRvpZNenbHF_9zJ7TOfPD0-z23mKuZJ9iqYyFoxFQ5LbEqQkS2hsYwXySsnGqLoBpIrXlovxcS7GqmVpKCtt3eRTdr7duwr-Y6DY66WLSG1rOvJD1JkoZZkV-f9gBqIUEkaw2IIYfIyBrF4FtzRhrTnojU69caU3rrQC_a1TizF2tttvIprWBtOhi79ZJfJCKTVyN1uORiufjoKO6KhDalwg7HXj3d-HvgClU4qm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22057560</pqid></control><display><type>article</type><title>Uncoupling of dynamic equations for periodic structures</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</creator><creatorcontrib>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</creatorcontrib><description>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/0022-460X(90)90886-5</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 1990-06, Vol.139 (2), p.253-263</ispartof><rights>1990</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</citedby><cites>FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0022-460X(90)90886-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19534999$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, C.W.</creatorcontrib><creatorcontrib>Cheung, Y.K.</creatorcontrib><creatorcontrib>Chan, H.C.</creatorcontrib><title>Uncoupling of dynamic equations for periodic structures</title><title>Journal of sound and vibration</title><description>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-Aw-9KHqoTtombS6CLH7BghcXvIV0OpFIt1mTVth_b9dd9KbMYWB43pnhYeyUwxUHLq8BsiwtJLxeKLhUUFUyFXtswkGJtBKy2meTH-SQHcX4DgCqyIsJKxcd-mHVuu4t8TZp1p1ZOkzoYzC9811MrA_JioLzzTiOfRiwHwLFY3ZgTRvpZNenbHF_9zJ7TOfPD0-z23mKuZJ9iqYyFoxFQ5LbEqQkS2hsYwXySsnGqLoBpIrXlovxcS7GqmVpKCtt3eRTdr7duwr-Y6DY66WLSG1rOvJD1JkoZZkV-f9gBqIUEkaw2IIYfIyBrF4FtzRhrTnojU69caU3rrQC_a1TizF2tttvIprWBtOhi79ZJfJCKTVyN1uORiufjoKO6KhDalwg7HXj3d-HvgClU4qm</recordid><startdate>19900608</startdate><enddate>19900608</enddate><creator>Cai, C.W.</creator><creator>Cheung, Y.K.</creator><creator>Chan, H.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>F28</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19900608</creationdate><title>Uncoupling of dynamic equations for periodic structures</title><author>Cai, C.W. ; Cheung, Y.K. ; Chan, H.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-ca8af0afcae61f7066efecafdf5c1896da9bd0ce81bf1588615151b67ae27fbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, C.W.</creatorcontrib><creatorcontrib>Cheung, Y.K.</creatorcontrib><creatorcontrib>Chan, H.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, C.W.</au><au>Cheung, Y.K.</au><au>Chan, H.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling of dynamic equations for periodic structures</atitle><jtitle>Journal of sound and vibration</jtitle><date>1990-06-08</date><risdate>1990</risdate><volume>139</volume><issue>2</issue><spage>253</spage><epage>263</epage><pages>253-263</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This paper is aimed at providing some explanation of the physical meaning and mathematical formulation of the U-transformation method, which has found many applications in obtaining solutions for structures with periodicity properties. The U-transformation was first derived from the mode method for rotational periodic structures. The dynamic equation for cyclic periodic structures can be uncoupled in the domain of single substructure by U-transformation. It is then extended to the double U-transformation method for structures with cyclic periodicity in two directions. However, it should be noted that the method may also be applied to some one-way or two-way linear periodic structures.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/0022-460X(90)90886-5</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 1990-06, Vol.139 (2), p.253-263 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_25767243 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Uncoupling of dynamic equations for periodic structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20of%20dynamic%20equations%20for%20periodic%20structures&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Cai,%20C.W.&rft.date=1990-06-08&rft.volume=139&rft.issue=2&rft.spage=253&rft.epage=263&rft.pages=253-263&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/0022-460X(90)90886-5&rft_dat=%3Cproquest_cross%3E22057560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22057560&rft_id=info:pmid/&rft_els_id=0022460X90908865&rfr_iscdi=true |