Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production

Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (48), p.e2104791-n/a
Hauptverfasser: Zhang, Yiqiong, Zhou, Bo, Wei, Zengxi, Zhou, Wang, Wang, Dongdong, Tian, Jing, Wang, Tehua, Zhao, Shuangliang, Liu, Jilei, Tao, Li, Wang, Shuangyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2104791
container_title Advanced materials (Weinheim)
container_volume 33
creator Zhang, Yiqiong
Zhou, Bo
Wei, Zengxi
Zhou, Wang
Wang, Dongdong
Tian, Jing
Wang, Tehua
Zhao, Shuangliang
Liu, Jilei
Tao, Li
Wang, Shuangyin
description Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap (>1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2. Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H2. A new approach is proposed to achieve low‐voltage and continuous hydrogen production using glucose‐assisted Cu(I)/Cu(II) redox as the anode reaction. Glucose in the electrolyte can reduce the Cu(II) into Cu(I) spontaneously, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2.
doi_str_mv 10.1002/adma.202104791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2576653919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576653919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3501-81c4bf2f3a75605a21d92f85cd81672d65000d40fefc051a9734e053257339533</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMkdiaYe0Zzt24rEq0FYqAiEQo2Vsp02VxsVOBN14BJ6RJyFVEUgsLHfL9939-hE6xzDAAGSozFoNCBAMSSrwAepgRnCcgGCHqAOCsljwJDtGJyGsAEBw4B30NHbNpiyqRTQpG-2C_Xz_GIVQhNqaaNz0Zv3hbs760b017i16LepldFVaXXunl3ZdaFVG063xbmGr6M470-i6cNUpOspVGezZ9-6ix-urh_E0nt9OZuPRPNaUAY4zrJPnnORUpYwDUwQbQfKMaZNhnhLDWZvUJJDbXAPDSqQ0scAoYSmlglHaRb393Y13L40NtVwXQduyVJV1TZAtyDmjAosWvfiDrlzjqzadJBySrP1E05Ya7CntXQje5nLji7XyW4lB7nqWu57lT8-tIPbCa1Ha7T-0HF3ejH7dLzMFf7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604800037</pqid></control><display><type>article</type><title>Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production</title><source>Wiley Journals</source><creator>Zhang, Yiqiong ; Zhou, Bo ; Wei, Zengxi ; Zhou, Wang ; Wang, Dongdong ; Tian, Jing ; Wang, Tehua ; Zhao, Shuangliang ; Liu, Jilei ; Tao, Li ; Wang, Shuangyin</creator><creatorcontrib>Zhang, Yiqiong ; Zhou, Bo ; Wei, Zengxi ; Zhou, Wang ; Wang, Dongdong ; Tian, Jing ; Wang, Tehua ; Zhao, Shuangliang ; Liu, Jilei ; Tao, Li ; Wang, Shuangyin</creatorcontrib><description>Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap (&gt;1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2. Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H2. A new approach is proposed to achieve low‐voltage and continuous hydrogen production using glucose‐assisted Cu(I)/Cu(II) redox as the anode reaction. Glucose in the electrolyte can reduce the Cu(II) into Cu(I) spontaneously, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104791</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>copper oxide ; Coupling ; Cu(I)/Cu(II) redox ; Density functional theory ; Electricity consumption ; electrocatalysis ; Electrolysis ; Glucose ; Hydrogen ; Hydrogen evolution reactions ; Hydrogen production ; organic electrooxidation ; Oxygen evolution reactions ; Photoelectrons ; Raman spectroscopy ; Spectrum analysis</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104791-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3501-81c4bf2f3a75605a21d92f85cd81672d65000d40fefc051a9734e053257339533</citedby><cites>FETCH-LOGICAL-c3501-81c4bf2f3a75605a21d92f85cd81672d65000d40fefc051a9734e053257339533</cites><orcidid>0000-0001-7185-9857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Yiqiong</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Zhou, Wang</creatorcontrib><creatorcontrib>Wang, Dongdong</creatorcontrib><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Wang, Tehua</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><title>Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production</title><title>Advanced materials (Weinheim)</title><description>Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap (&gt;1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2. Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H2. A new approach is proposed to achieve low‐voltage and continuous hydrogen production using glucose‐assisted Cu(I)/Cu(II) redox as the anode reaction. Glucose in the electrolyte can reduce the Cu(II) into Cu(I) spontaneously, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2.</description><subject>copper oxide</subject><subject>Coupling</subject><subject>Cu(I)/Cu(II) redox</subject><subject>Density functional theory</subject><subject>Electricity consumption</subject><subject>electrocatalysis</subject><subject>Electrolysis</subject><subject>Glucose</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>organic electrooxidation</subject><subject>Oxygen evolution reactions</subject><subject>Photoelectrons</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMkdiaYe0Zzt24rEq0FYqAiEQo2Vsp02VxsVOBN14BJ6RJyFVEUgsLHfL9939-hE6xzDAAGSozFoNCBAMSSrwAepgRnCcgGCHqAOCsljwJDtGJyGsAEBw4B30NHbNpiyqRTQpG-2C_Xz_GIVQhNqaaNz0Zv3hbs760b017i16LepldFVaXXunl3ZdaFVG063xbmGr6M470-i6cNUpOspVGezZ9-6ix-urh_E0nt9OZuPRPNaUAY4zrJPnnORUpYwDUwQbQfKMaZNhnhLDWZvUJJDbXAPDSqQ0scAoYSmlglHaRb393Y13L40NtVwXQduyVJV1TZAtyDmjAosWvfiDrlzjqzadJBySrP1E05Ya7CntXQje5nLji7XyW4lB7nqWu57lT8-tIPbCa1Ha7T-0HF3ejH7dLzMFf7Y</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhang, Yiqiong</creator><creator>Zhou, Bo</creator><creator>Wei, Zengxi</creator><creator>Zhou, Wang</creator><creator>Wang, Dongdong</creator><creator>Tian, Jing</creator><creator>Wang, Tehua</creator><creator>Zhao, Shuangliang</creator><creator>Liu, Jilei</creator><creator>Tao, Li</creator><creator>Wang, Shuangyin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></search><sort><creationdate>20211201</creationdate><title>Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production</title><author>Zhang, Yiqiong ; Zhou, Bo ; Wei, Zengxi ; Zhou, Wang ; Wang, Dongdong ; Tian, Jing ; Wang, Tehua ; Zhao, Shuangliang ; Liu, Jilei ; Tao, Li ; Wang, Shuangyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3501-81c4bf2f3a75605a21d92f85cd81672d65000d40fefc051a9734e053257339533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>copper oxide</topic><topic>Coupling</topic><topic>Cu(I)/Cu(II) redox</topic><topic>Density functional theory</topic><topic>Electricity consumption</topic><topic>electrocatalysis</topic><topic>Electrolysis</topic><topic>Glucose</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>organic electrooxidation</topic><topic>Oxygen evolution reactions</topic><topic>Photoelectrons</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yiqiong</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Zhou, Wang</creatorcontrib><creatorcontrib>Wang, Dongdong</creatorcontrib><creatorcontrib>Tian, Jing</creatorcontrib><creatorcontrib>Wang, Tehua</creatorcontrib><creatorcontrib>Zhao, Shuangliang</creatorcontrib><creatorcontrib>Liu, Jilei</creatorcontrib><creatorcontrib>Tao, Li</creatorcontrib><creatorcontrib>Wang, Shuangyin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yiqiong</au><au>Zhou, Bo</au><au>Wei, Zengxi</au><au>Zhou, Wang</au><au>Wang, Dongdong</au><au>Tian, Jing</au><au>Wang, Tehua</au><au>Zhao, Shuangliang</au><au>Liu, Jilei</au><au>Tao, Li</au><au>Wang, Shuangyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>48</issue><spage>e2104791</spage><epage>n/a</epage><pages>e2104791-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Water electrolysis is a sustainable technology for hydrogen production since this process can utilize the intermittent electricity generated by renewable energy such as solar, wind, and hydro. However, the large‐scale application of this process is restricted by the high electricity consumption due to the large potential gap (&gt;1.23 V) between the anodic oxygen evolution reaction and the cathodic hydrogen evolution reaction (HER). Herein, a novel and efficient hydrogen production system is developed for coupling glucose‐assisted Cu(I)/Cu(II) redox with HER. The onset potential of the electrooxidation of Cu(I) to Cu(II) is as low as 0.7 VRHE (vs reversible hydrogen electrode). In situ Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and density functional theory calculation demonstrates that glucose in the electrolyte can reduce the Cu(II) into Cu(I) instantaneously via a thermocatalysis process, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2. Consequently, the electricity consumption for per cubic H2 produced in the system is 2.2 kWh, only half of the value for conventional water electrolysis (4.5 kWh). This work provides a promising strategy for the low‐cost, efficient production of high‐purity H2. A new approach is proposed to achieve low‐voltage and continuous hydrogen production using glucose‐assisted Cu(I)/Cu(II) redox as the anode reaction. Glucose in the electrolyte can reduce the Cu(II) into Cu(I) spontaneously, thus completing the cycle of Cu(I)/Cu(II) redox. The assembled electrolyzer only requires a voltage input of 0.92 V to achieve a current density of 100 mA cm−2.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202104791</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7185-9857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104791-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2576653919
source Wiley Journals
subjects copper oxide
Coupling
Cu(I)/Cu(II) redox
Density functional theory
Electricity consumption
electrocatalysis
Electrolysis
Glucose
Hydrogen
Hydrogen evolution reactions
Hydrogen production
organic electrooxidation
Oxygen evolution reactions
Photoelectrons
Raman spectroscopy
Spectrum analysis
title Coupling Glucose‐Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Glucose%E2%80%90Assisted%20Cu(I)/Cu(II)%20Redox%20with%20Electrochemical%20Hydrogen%20Production&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yiqiong&rft.date=2021-12-01&rft.volume=33&rft.issue=48&rft.spage=e2104791&rft.epage=n/a&rft.pages=e2104791-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104791&rft_dat=%3Cproquest_cross%3E2576653919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604800037&rft_id=info:pmid/&rfr_iscdi=true