One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay

To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (39), p.46225-46232
Hauptverfasser: Tang, Daili, Yang, Xiaolan, Wang, Birui, Ding, Yanbin, Xu, Siyu, Liu, Junjie, Peng, Yang, Yu, Xinglong, Su, Zhaohong, Qin, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46232
container_issue 39
container_start_page 46225
container_title ACS applied materials & interfaces
container_volume 13
creator Tang, Daili
Yang, Xiaolan
Wang, Birui
Ding, Yanbin
Xu, Siyu
Liu, Junjie
Peng, Yang
Yu, Xinglong
Su, Zhaohong
Qin, Xiaoli
description To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn­(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.
doi_str_mv 10.1021/acsami.1c09095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575836124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575836124</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-48357627ae2b92d39c8d91ddbb2e2842622032b8ba1f182b6c010485a2240d343</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVpaX7abZZByzTgiXQleexdy0x-BtJMoM2mG3MtyUTBtiaSTJg8UR4zns4km9KVJPSdj3s5hBxxNuEM-BnqiJ2bcM1KVqoPZJ-XUmYFKPj4fpdyjxzE-MBYLoCpz2RPSKWEKvk-eVn2NvuV7Iqet1an4PW97ZzGll4G_5TuqW8ozM_EnP7pTxaLb9nP5QW9WtfBGXqDvde-W_noko3U9xT7N42x48PQu-Ra94zJjZ-jCelturmN32FON56_AkzYrmOijQ__zLDouqH3GCOuv5BPDbbRft2dh-Tu4vz37Cq7Xl4uZj-uMxSCpUwWQk1zmKKFugQjSl2YkhtT12ChkJADMAF1USNveAF1rhlnslAIIJkRUhySk613FfzjYGOqOhe1bVvsrR9iBWqqCpFz2KCTLaqDjzHYploF12FYV5xVm3aqbTvVrp0xcLxzD3VnzTv-VscInG6BMVg9-CH046r_s70COUKZUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575836124</pqid></control><display><type>article</type><title>One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Tang, Daili ; Yang, Xiaolan ; Wang, Birui ; Ding, Yanbin ; Xu, Siyu ; Liu, Junjie ; Peng, Yang ; Yu, Xinglong ; Su, Zhaohong ; Qin, Xiaoli</creator><creatorcontrib>Tang, Daili ; Yang, Xiaolan ; Wang, Birui ; Ding, Yanbin ; Xu, Siyu ; Liu, Junjie ; Peng, Yang ; Yu, Xinglong ; Su, Zhaohong ; Qin, Xiaoli</creatorcontrib><description>To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn­(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c09095</identifier><identifier>PMID: 34553591</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Antibodies, Immobilized - immunology ; Antigens, Bacterial - analysis ; Antigens, Bacterial - immunology ; Biological and Medical Applications of Materials and Interfaces ; Catalysis ; Electrochemical Techniques - instrumentation ; Electrochemical Techniques - methods ; Electrodes ; Erysipelothrix - chemistry ; Hemin - chemistry ; Immunoassay - instrumentation ; Immunoassay - methods ; Immunoglobulin G - analysis ; Immunoglobulin G - immunology ; Limit of Detection ; Metal Nanoparticles - chemistry ; Metal-Organic Frameworks - chemistry ; Nanocomposites - chemistry ; Oxidation-Reduction ; Oxygen - chemistry ; Platinum - chemistry ; Swine ; Tricarboxylic Acids - chemistry ; Zinc - chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2021-10, Vol.13 (39), p.46225-46232</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-48357627ae2b92d39c8d91ddbb2e2842622032b8ba1f182b6c010485a2240d343</citedby><cites>FETCH-LOGICAL-a330t-48357627ae2b92d39c8d91ddbb2e2842622032b8ba1f182b6c010485a2240d343</cites><orcidid>0000-0001-7616-0770 ; 0000-0002-8872-8551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c09095$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c09095$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34553591$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Daili</creatorcontrib><creatorcontrib>Yang, Xiaolan</creatorcontrib><creatorcontrib>Wang, Birui</creatorcontrib><creatorcontrib>Ding, Yanbin</creatorcontrib><creatorcontrib>Xu, Siyu</creatorcontrib><creatorcontrib>Liu, Junjie</creatorcontrib><creatorcontrib>Peng, Yang</creatorcontrib><creatorcontrib>Yu, Xinglong</creatorcontrib><creatorcontrib>Su, Zhaohong</creatorcontrib><creatorcontrib>Qin, Xiaoli</creatorcontrib><title>One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn­(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.</description><subject>Animals</subject><subject>Antibodies, Immobilized - immunology</subject><subject>Antigens, Bacterial - analysis</subject><subject>Antigens, Bacterial - immunology</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Catalysis</subject><subject>Electrochemical Techniques - instrumentation</subject><subject>Electrochemical Techniques - methods</subject><subject>Electrodes</subject><subject>Erysipelothrix - chemistry</subject><subject>Hemin - chemistry</subject><subject>Immunoassay - instrumentation</subject><subject>Immunoassay - methods</subject><subject>Immunoglobulin G - analysis</subject><subject>Immunoglobulin G - immunology</subject><subject>Limit of Detection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Nanocomposites - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Platinum - chemistry</subject><subject>Swine</subject><subject>Tricarboxylic Acids - chemistry</subject><subject>Zinc - chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1q3DAUhUVpaX7abZZByzTgiXQleexdy0x-BtJMoM2mG3MtyUTBtiaSTJg8UR4zns4km9KVJPSdj3s5hBxxNuEM-BnqiJ2bcM1KVqoPZJ-XUmYFKPj4fpdyjxzE-MBYLoCpz2RPSKWEKvk-eVn2NvuV7Iqet1an4PW97ZzGll4G_5TuqW8ozM_EnP7pTxaLb9nP5QW9WtfBGXqDvde-W_noko3U9xT7N42x48PQu-Ra94zJjZ-jCelturmN32FON56_AkzYrmOijQ__zLDouqH3GCOuv5BPDbbRft2dh-Tu4vz37Cq7Xl4uZj-uMxSCpUwWQk1zmKKFugQjSl2YkhtT12ChkJADMAF1USNveAF1rhlnslAIIJkRUhySk613FfzjYGOqOhe1bVvsrR9iBWqqCpFz2KCTLaqDjzHYploF12FYV5xVm3aqbTvVrp0xcLxzD3VnzTv-VscInG6BMVg9-CH046r_s70COUKZUQ</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Tang, Daili</creator><creator>Yang, Xiaolan</creator><creator>Wang, Birui</creator><creator>Ding, Yanbin</creator><creator>Xu, Siyu</creator><creator>Liu, Junjie</creator><creator>Peng, Yang</creator><creator>Yu, Xinglong</creator><creator>Su, Zhaohong</creator><creator>Qin, Xiaoli</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7616-0770</orcidid><orcidid>https://orcid.org/0000-0002-8872-8551</orcidid></search><sort><creationdate>20211006</creationdate><title>One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay</title><author>Tang, Daili ; Yang, Xiaolan ; Wang, Birui ; Ding, Yanbin ; Xu, Siyu ; Liu, Junjie ; Peng, Yang ; Yu, Xinglong ; Su, Zhaohong ; Qin, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-48357627ae2b92d39c8d91ddbb2e2842622032b8ba1f182b6c010485a2240d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antibodies, Immobilized - immunology</topic><topic>Antigens, Bacterial - analysis</topic><topic>Antigens, Bacterial - immunology</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Catalysis</topic><topic>Electrochemical Techniques - instrumentation</topic><topic>Electrochemical Techniques - methods</topic><topic>Electrodes</topic><topic>Erysipelothrix - chemistry</topic><topic>Hemin - chemistry</topic><topic>Immunoassay - instrumentation</topic><topic>Immunoassay - methods</topic><topic>Immunoglobulin G - analysis</topic><topic>Immunoglobulin G - immunology</topic><topic>Limit of Detection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Nanocomposites - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Platinum - chemistry</topic><topic>Swine</topic><topic>Tricarboxylic Acids - chemistry</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Daili</creatorcontrib><creatorcontrib>Yang, Xiaolan</creatorcontrib><creatorcontrib>Wang, Birui</creatorcontrib><creatorcontrib>Ding, Yanbin</creatorcontrib><creatorcontrib>Xu, Siyu</creatorcontrib><creatorcontrib>Liu, Junjie</creatorcontrib><creatorcontrib>Peng, Yang</creatorcontrib><creatorcontrib>Yu, Xinglong</creatorcontrib><creatorcontrib>Su, Zhaohong</creatorcontrib><creatorcontrib>Qin, Xiaoli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Daili</au><au>Yang, Xiaolan</au><au>Wang, Birui</au><au>Ding, Yanbin</au><au>Xu, Siyu</au><au>Liu, Junjie</au><au>Peng, Yang</au><au>Yu, Xinglong</au><au>Su, Zhaohong</au><au>Qin, Xiaoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-06</date><risdate>2021</risdate><volume>13</volume><issue>39</issue><spage>46225</spage><epage>46232</epage><pages>46225-46232</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To date, two-dimensional (2D) and three-dimensional (3D) metal organic frameworks (MOFs) have been promising materials for applications in electrocatalysis, separation, and sensing. However, the exploration of a simple method for simultaneous fabrication of 2D/3D MOFs on a surface remains challenging. Herein, a one-step and in situ electrosynthesis strategy for fabrication of 2D Hemin-bridged MOF sheets (Hemin-MOFs) or 2D/3D Zn­(II)-MOF hybrid nanocomposites on an electrode is reported. It exhibits varied morphologies at different electrodeposition times and attains a 2D/3D complex morphology by adding 1,3,5-benzenetricarboxylic acid (H3BTC) as an organic ligand. The morphology and size of 2D Hemin-MOFs are important factors that influence their performance. Since Pt nanoparticles (PtNPs) are grown on 2D Hemin-MOF sheets, this composite can serve as the peroxidase mimics and PtNPs can act as an anchor to capture the antibody. Therefore, this hybrid nanosheet-modified electrode is used as an electrochemical sensing platform for ultrasensitive pig immunoglobulin G (IgG) and the surface-protective antigen (Spa) protein of Erysipelothrix rhusiopathiae immunodetection. Moreover, this work provides a new avenue for the electrochemical synthesis of 2D/3D MOF hybrid nanocomposites with a high surface area and biomimetic catalysts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34553591</pmid><doi>10.1021/acsami.1c09095</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7616-0770</orcidid><orcidid>https://orcid.org/0000-0002-8872-8551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-10, Vol.13 (39), p.46225-46232
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2575836124
source MEDLINE; American Chemical Society Journals
subjects Animals
Antibodies, Immobilized - immunology
Antigens, Bacterial - analysis
Antigens, Bacterial - immunology
Biological and Medical Applications of Materials and Interfaces
Catalysis
Electrochemical Techniques - instrumentation
Electrochemical Techniques - methods
Electrodes
Erysipelothrix - chemistry
Hemin - chemistry
Immunoassay - instrumentation
Immunoassay - methods
Immunoglobulin G - analysis
Immunoglobulin G - immunology
Limit of Detection
Metal Nanoparticles - chemistry
Metal-Organic Frameworks - chemistry
Nanocomposites - chemistry
Oxidation-Reduction
Oxygen - chemistry
Platinum - chemistry
Swine
Tricarboxylic Acids - chemistry
Zinc - chemistry
title One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T15%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Step%20Electrochemical%20Growth%20of%202D/3D%20Zn(II)-MOF%20Hybrid%20Nanocomposites%20on%20an%20Electrode%20and%20Utilization%20of%20a%20PtNPs@2D%20MOF%20Nanocatalyst%20for%20Electrochemical%20Immunoassay&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Tang,%20Daili&rft.date=2021-10-06&rft.volume=13&rft.issue=39&rft.spage=46225&rft.epage=46232&rft.pages=46225-46232&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c09095&rft_dat=%3Cproquest_cross%3E2575836124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575836124&rft_id=info:pmid/34553591&rfr_iscdi=true