Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration

To successfully complete the design of high-performance electrocaloric devices for advanced flexible cooling systems, it is necessary to comprehensively consider the optimization of composite materials, structural design of nanocomposites, and device integration. The cooling power density and energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-10, Vol.13 (39), p.46681-46693
Hauptverfasser: Abdullahi Hassan, Yusuf, Chen, Lei, Geng, Xinwei, Jiang, Zheye, Zhang, Fan, Luo, Shibin, Hu, Hailong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46693
container_issue 39
container_start_page 46681
container_title ACS applied materials & interfaces
container_volume 13
creator Abdullahi Hassan, Yusuf
Chen, Lei
Geng, Xinwei
Jiang, Zheye
Zhang, Fan
Luo, Shibin
Hu, Hailong
description To successfully complete the design of high-performance electrocaloric devices for advanced flexible cooling systems, it is necessary to comprehensively consider the optimization of composite materials, structural design of nanocomposites, and device integration. The cooling power density and energy storage density of various structural configurated poly­(vinylidene fluoride) (PVDF)-based polymer nanocomposites are investigated using a phase-field model through the general formulation of a partial differential equation of COMSOL Multiphysics and finite element analysis through Maxwell’s equation of conservation of charge. It is revealed that ferroelectric polymer nanocomposites composed of boron nitrate fibers (BNf) + BCZT@BaTiO3(f) + PVDF possess the optimal result regarding their cooling power as well as the energy storage density. The cooling power density of the core–shell-structured BNf + BCZT@BaTiO3(f) + PVDF nanocomposites is evaluated as a function of the volume content, frequency, and electric field, where a remarkable cooling power density of 162.2 W/cm3 is achieved at 4 Hz with energy storage density of 33.4 J/cm3 under a 500 MV/m field. Therefore, by performing the systematic study of the electrocaloric effect in structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration, this opens an avenue for developing remarkably improved power density with reduced weight in aerospace energy storage technology.
doi_str_mv 10.1021/acsami.1c13614
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575381957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575381957</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-9ad651a632304e2e5f365b02994e918bdec6c24f5e37a940ac234b2f51b525983</originalsourceid><addsrcrecordid>eNp1kL1PwzAQxSMEEqWwMntESCn-TOIRVS0gVYAozJHjnCtXTlzsZOh_jyGIjenend7vdPey7JrgBcGU3CkdVWcXRBNWEH6SzYjkPK-ooKd_mvPz7CLGPcYFo1jMsrhyoIfgtXI-WI1WxqQeeYO2Qxj1MAbl0NL3xu6SHKBFawjBww-V_K_eHTsI6Fn1Xvvu4KMdICLjA9p6Z9t8OyQKvYEJdgdpg_X9ZXZmlItw9Vvn2cd69b58zDcvD0_L-02uGC6HXKq2EESlQxnmQEEYVogGUyk5SFI1LehCU24EsFJJjpWmjDfUCNIIKmTF5tnNtPcQ_OcIcag7GzU4p3rwY6ypKAWriBRlsi4mqw4-xgCmPgTbqXCsCa6_062ndOvfdBNwOwFpXu_9GPr0yX_mL1l4fpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575381957</pqid></control><display><type>article</type><title>Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration</title><source>ACS Publications</source><creator>Abdullahi Hassan, Yusuf ; Chen, Lei ; Geng, Xinwei ; Jiang, Zheye ; Zhang, Fan ; Luo, Shibin ; Hu, Hailong</creator><creatorcontrib>Abdullahi Hassan, Yusuf ; Chen, Lei ; Geng, Xinwei ; Jiang, Zheye ; Zhang, Fan ; Luo, Shibin ; Hu, Hailong</creatorcontrib><description>To successfully complete the design of high-performance electrocaloric devices for advanced flexible cooling systems, it is necessary to comprehensively consider the optimization of composite materials, structural design of nanocomposites, and device integration. The cooling power density and energy storage density of various structural configurated poly­(vinylidene fluoride) (PVDF)-based polymer nanocomposites are investigated using a phase-field model through the general formulation of a partial differential equation of COMSOL Multiphysics and finite element analysis through Maxwell’s equation of conservation of charge. It is revealed that ferroelectric polymer nanocomposites composed of boron nitrate fibers (BNf) + BCZT@BaTiO3(f) + PVDF possess the optimal result regarding their cooling power as well as the energy storage density. The cooling power density of the core–shell-structured BNf + BCZT@BaTiO3(f) + PVDF nanocomposites is evaluated as a function of the volume content, frequency, and electric field, where a remarkable cooling power density of 162.2 W/cm3 is achieved at 4 Hz with energy storage density of 33.4 J/cm3 under a 500 MV/m field. Therefore, by performing the systematic study of the electrocaloric effect in structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration, this opens an avenue for developing remarkably improved power density with reduced weight in aerospace energy storage technology.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c13614</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-10, Vol.13 (39), p.46681-46693</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-9ad651a632304e2e5f365b02994e918bdec6c24f5e37a940ac234b2f51b525983</citedby><cites>FETCH-LOGICAL-a307t-9ad651a632304e2e5f365b02994e918bdec6c24f5e37a940ac234b2f51b525983</cites><orcidid>0000-0003-4107-2644</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c13614$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c13614$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Abdullahi Hassan, Yusuf</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Geng, Xinwei</creatorcontrib><creatorcontrib>Jiang, Zheye</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Luo, Shibin</creatorcontrib><creatorcontrib>Hu, Hailong</creatorcontrib><title>Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To successfully complete the design of high-performance electrocaloric devices for advanced flexible cooling systems, it is necessary to comprehensively consider the optimization of composite materials, structural design of nanocomposites, and device integration. The cooling power density and energy storage density of various structural configurated poly­(vinylidene fluoride) (PVDF)-based polymer nanocomposites are investigated using a phase-field model through the general formulation of a partial differential equation of COMSOL Multiphysics and finite element analysis through Maxwell’s equation of conservation of charge. It is revealed that ferroelectric polymer nanocomposites composed of boron nitrate fibers (BNf) + BCZT@BaTiO3(f) + PVDF possess the optimal result regarding their cooling power as well as the energy storage density. The cooling power density of the core–shell-structured BNf + BCZT@BaTiO3(f) + PVDF nanocomposites is evaluated as a function of the volume content, frequency, and electric field, where a remarkable cooling power density of 162.2 W/cm3 is achieved at 4 Hz with energy storage density of 33.4 J/cm3 under a 500 MV/m field. Therefore, by performing the systematic study of the electrocaloric effect in structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration, this opens an avenue for developing remarkably improved power density with reduced weight in aerospace energy storage technology.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQxSMEEqWwMntESCn-TOIRVS0gVYAozJHjnCtXTlzsZOh_jyGIjenend7vdPey7JrgBcGU3CkdVWcXRBNWEH6SzYjkPK-ooKd_mvPz7CLGPcYFo1jMsrhyoIfgtXI-WI1WxqQeeYO2Qxj1MAbl0NL3xu6SHKBFawjBww-V_K_eHTsI6Fn1Xvvu4KMdICLjA9p6Z9t8OyQKvYEJdgdpg_X9ZXZmlItw9Vvn2cd69b58zDcvD0_L-02uGC6HXKq2EESlQxnmQEEYVogGUyk5SFI1LehCU24EsFJJjpWmjDfUCNIIKmTF5tnNtPcQ_OcIcag7GzU4p3rwY6ypKAWriBRlsi4mqw4-xgCmPgTbqXCsCa6_062ndOvfdBNwOwFpXu_9GPr0yX_mL1l4fpk</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Abdullahi Hassan, Yusuf</creator><creator>Chen, Lei</creator><creator>Geng, Xinwei</creator><creator>Jiang, Zheye</creator><creator>Zhang, Fan</creator><creator>Luo, Shibin</creator><creator>Hu, Hailong</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4107-2644</orcidid></search><sort><creationdate>20211006</creationdate><title>Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration</title><author>Abdullahi Hassan, Yusuf ; Chen, Lei ; Geng, Xinwei ; Jiang, Zheye ; Zhang, Fan ; Luo, Shibin ; Hu, Hailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-9ad651a632304e2e5f365b02994e918bdec6c24f5e37a940ac234b2f51b525983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullahi Hassan, Yusuf</creatorcontrib><creatorcontrib>Chen, Lei</creatorcontrib><creatorcontrib>Geng, Xinwei</creatorcontrib><creatorcontrib>Jiang, Zheye</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Luo, Shibin</creatorcontrib><creatorcontrib>Hu, Hailong</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullahi Hassan, Yusuf</au><au>Chen, Lei</au><au>Geng, Xinwei</au><au>Jiang, Zheye</au><au>Zhang, Fan</au><au>Luo, Shibin</au><au>Hu, Hailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-10-06</date><risdate>2021</risdate><volume>13</volume><issue>39</issue><spage>46681</spage><epage>46693</epage><pages>46681-46693</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To successfully complete the design of high-performance electrocaloric devices for advanced flexible cooling systems, it is necessary to comprehensively consider the optimization of composite materials, structural design of nanocomposites, and device integration. The cooling power density and energy storage density of various structural configurated poly­(vinylidene fluoride) (PVDF)-based polymer nanocomposites are investigated using a phase-field model through the general formulation of a partial differential equation of COMSOL Multiphysics and finite element analysis through Maxwell’s equation of conservation of charge. It is revealed that ferroelectric polymer nanocomposites composed of boron nitrate fibers (BNf) + BCZT@BaTiO3(f) + PVDF possess the optimal result regarding their cooling power as well as the energy storage density. The cooling power density of the core–shell-structured BNf + BCZT@BaTiO3(f) + PVDF nanocomposites is evaluated as a function of the volume content, frequency, and electric field, where a remarkable cooling power density of 162.2 W/cm3 is achieved at 4 Hz with energy storage density of 33.4 J/cm3 under a 500 MV/m field. Therefore, by performing the systematic study of the electrocaloric effect in structural configurated ferroelectric polymer nanocomposites for solid-state refrigeration, this opens an avenue for developing remarkably improved power density with reduced weight in aerospace energy storage technology.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c13614</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4107-2644</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-10, Vol.13 (39), p.46681-46693
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2575381957
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Electrocaloric Effect of Structural Configurated Ferroelectric Polymer Nanocomposites for Solid-State Refrigeration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocaloric%20Effect%20of%20Structural%20Configurated%20Ferroelectric%20Polymer%20Nanocomposites%20for%20Solid-State%20Refrigeration&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Abdullahi%20Hassan,%20Yusuf&rft.date=2021-10-06&rft.volume=13&rft.issue=39&rft.spage=46681&rft.epage=46693&rft.pages=46681-46693&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c13614&rft_dat=%3Cproquest_cross%3E2575381957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575381957&rft_id=info:pmid/&rfr_iscdi=true