Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship
Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophi...
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2021-10, Vol.61 (10), p.4890-4899 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4899 |
---|---|
container_issue | 10 |
container_start_page | 4890 |
container_title | Journal of chemical information and modeling |
container_volume | 61 |
creator | Boobier, Samuel Liu, Yufeng Sharma, Krishna Hose, David R. J Blacker, A. John Kapur, Nikil Nguyen, Bao N |
description | Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values. |
doi_str_mv | 10.1021/acs.jcim.1c00610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575377299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587197263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFbvHgNePLg1H7vZzVHqJxQtVsFbSLOzNiXdrElW6b93a-tF8DQD87wvw5MkpwSPCKbkUukwWmqzGhGNMSd4LxmQPBOp4Pht_3fPBT9MjkJYYsyY4HSQVFMPldHRNO9o5uwnNDG9hhaaqt_QY6ctuHZhrNEmrtFUebWCCB59mbhACo1VF5RFs-g7HTsPaOpdC75Hn8GqaFwTFqY9Tg5qZQOc7OYweb29eRnfp5Onu4fx1SRVrGQx1apkmaKawRwTXPJcK4WxYBWjGROMz2lVEZbPa2Ca1TzLidI11RgwpVVGGBsm59ve1ruPDkKUKxM0WKsacF2QNC9yVhRUiB49-4MuXeeb_rueKgsiCso3hXhLae9C8FDL1puV8mtJsNxol712udEud9r7yMU28nP57fwX_waI-odl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587197263</pqid></control><display><type>article</type><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><source>American Chemical Society Journals</source><creator>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</creator><creatorcontrib>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</creatorcontrib><description>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c00610</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Algorithms ; Computing time ; Machine learning ; Machine Learning and Deep Learning ; Mathematical models ; Nucleophiles ; Parameterization ; Parameters ; Prediction models ; Predictions ; Principal components analysis ; Reactivity ; Selectivity ; Solvents</subject><ispartof>Journal of chemical information and modeling, 2021-10, Vol.61 (10), p.4890-4899</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</citedby><cites>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</cites><orcidid>0000-0003-4898-2712 ; 0000-0002-0254-025X ; 0000-0003-1041-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c00610$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c00610$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Boobier, Samuel</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Sharma, Krishna</creatorcontrib><creatorcontrib>Hose, David R. J</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Nguyen, Bao N</creatorcontrib><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</description><subject>Algorithms</subject><subject>Computing time</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Mathematical models</subject><subject>Nucleophiles</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Principal components analysis</subject><subject>Reactivity</subject><subject>Selectivity</subject><subject>Solvents</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFbvHgNePLg1H7vZzVHqJxQtVsFbSLOzNiXdrElW6b93a-tF8DQD87wvw5MkpwSPCKbkUukwWmqzGhGNMSd4LxmQPBOp4Pht_3fPBT9MjkJYYsyY4HSQVFMPldHRNO9o5uwnNDG9hhaaqt_QY6ctuHZhrNEmrtFUebWCCB59mbhACo1VF5RFs-g7HTsPaOpdC75Hn8GqaFwTFqY9Tg5qZQOc7OYweb29eRnfp5Onu4fx1SRVrGQx1apkmaKawRwTXPJcK4WxYBWjGROMz2lVEZbPa2Ca1TzLidI11RgwpVVGGBsm59ve1ruPDkKUKxM0WKsacF2QNC9yVhRUiB49-4MuXeeb_rueKgsiCso3hXhLae9C8FDL1puV8mtJsNxol712udEud9r7yMU28nP57fwX_waI-odl</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Boobier, Samuel</creator><creator>Liu, Yufeng</creator><creator>Sharma, Krishna</creator><creator>Hose, David R. J</creator><creator>Blacker, A. John</creator><creator>Kapur, Nikil</creator><creator>Nguyen, Bao N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0002-0254-025X</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid></search><sort><creationdate>20211025</creationdate><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><author>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computing time</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Mathematical models</topic><topic>Nucleophiles</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Principal components analysis</topic><topic>Reactivity</topic><topic>Selectivity</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boobier, Samuel</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Sharma, Krishna</creatorcontrib><creatorcontrib>Hose, David R. J</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Nguyen, Bao N</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boobier, Samuel</au><au>Liu, Yufeng</au><au>Sharma, Krishna</au><au>Hose, David R. J</au><au>Blacker, A. John</au><au>Kapur, Nikil</au><au>Nguyen, Bao N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>61</volume><issue>10</issue><spage>4890</spage><epage>4899</epage><pages>4890-4899</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.1c00610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0002-0254-025X</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2021-10, Vol.61 (10), p.4890-4899 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2575377299 |
source | American Chemical Society Journals |
subjects | Algorithms Computing time Machine learning Machine Learning and Deep Learning Mathematical models Nucleophiles Parameterization Parameters Prediction models Predictions Principal components analysis Reactivity Selectivity Solvents |
title | Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Solvent-Dependent%20Nucleophilicity%20Parameter%20with%20a%20Causal%20Structure%20Property%20Relationship&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Boobier,%20Samuel&rft.date=2021-10-25&rft.volume=61&rft.issue=10&rft.spage=4890&rft.epage=4899&rft.pages=4890-4899&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c00610&rft_dat=%3Cproquest_cross%3E2587197263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587197263&rft_id=info:pmid/&rfr_iscdi=true |