Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship

Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2021-10, Vol.61 (10), p.4890-4899
Hauptverfasser: Boobier, Samuel, Liu, Yufeng, Sharma, Krishna, Hose, David R. J, Blacker, A. John, Kapur, Nikil, Nguyen, Bao N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4899
container_issue 10
container_start_page 4890
container_title Journal of chemical information and modeling
container_volume 61
creator Boobier, Samuel
Liu, Yufeng
Sharma, Krishna
Hose, David R. J
Blacker, A. John
Kapur, Nikil
Nguyen, Bao N
description Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.
doi_str_mv 10.1021/acs.jcim.1c00610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575377299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587197263</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhhdRsFbvHgNePLg1H7vZzVHqJxQtVsFbSLOzNiXdrElW6b93a-tF8DQD87wvw5MkpwSPCKbkUukwWmqzGhGNMSd4LxmQPBOp4Pht_3fPBT9MjkJYYsyY4HSQVFMPldHRNO9o5uwnNDG9hhaaqt_QY6ctuHZhrNEmrtFUebWCCB59mbhACo1VF5RFs-g7HTsPaOpdC75Hn8GqaFwTFqY9Tg5qZQOc7OYweb29eRnfp5Onu4fx1SRVrGQx1apkmaKawRwTXPJcK4WxYBWjGROMz2lVEZbPa2Ca1TzLidI11RgwpVVGGBsm59ve1ruPDkKUKxM0WKsacF2QNC9yVhRUiB49-4MuXeeb_rueKgsiCso3hXhLae9C8FDL1puV8mtJsNxol712udEud9r7yMU28nP57fwX_waI-odl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2587197263</pqid></control><display><type>article</type><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><source>American Chemical Society Journals</source><creator>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</creator><creatorcontrib>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</creatorcontrib><description>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.1c00610</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Algorithms ; Computing time ; Machine learning ; Machine Learning and Deep Learning ; Mathematical models ; Nucleophiles ; Parameterization ; Parameters ; Prediction models ; Predictions ; Principal components analysis ; Reactivity ; Selectivity ; Solvents</subject><ispartof>Journal of chemical information and modeling, 2021-10, Vol.61 (10), p.4890-4899</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 25, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</citedby><cites>FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</cites><orcidid>0000-0003-4898-2712 ; 0000-0002-0254-025X ; 0000-0003-1041-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.1c00610$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.1c00610$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Boobier, Samuel</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Sharma, Krishna</creatorcontrib><creatorcontrib>Hose, David R. J</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Nguyen, Bao N</creatorcontrib><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</description><subject>Algorithms</subject><subject>Computing time</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Mathematical models</subject><subject>Nucleophiles</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Principal components analysis</subject><subject>Reactivity</subject><subject>Selectivity</subject><subject>Solvents</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhhdRsFbvHgNePLg1H7vZzVHqJxQtVsFbSLOzNiXdrElW6b93a-tF8DQD87wvw5MkpwSPCKbkUukwWmqzGhGNMSd4LxmQPBOp4Pht_3fPBT9MjkJYYsyY4HSQVFMPldHRNO9o5uwnNDG9hhaaqt_QY6ctuHZhrNEmrtFUebWCCB59mbhACo1VF5RFs-g7HTsPaOpdC75Hn8GqaFwTFqY9Tg5qZQOc7OYweb29eRnfp5Onu4fx1SRVrGQx1apkmaKawRwTXPJcK4WxYBWjGROMz2lVEZbPa2Ca1TzLidI11RgwpVVGGBsm59ve1ruPDkKUKxM0WKsacF2QNC9yVhRUiB49-4MuXeeb_rueKgsiCso3hXhLae9C8FDL1puV8mtJsNxol712udEud9r7yMU28nP57fwX_waI-odl</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Boobier, Samuel</creator><creator>Liu, Yufeng</creator><creator>Sharma, Krishna</creator><creator>Hose, David R. J</creator><creator>Blacker, A. John</creator><creator>Kapur, Nikil</creator><creator>Nguyen, Bao N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0002-0254-025X</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid></search><sort><creationdate>20211025</creationdate><title>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</title><author>Boobier, Samuel ; Liu, Yufeng ; Sharma, Krishna ; Hose, David R. J ; Blacker, A. John ; Kapur, Nikil ; Nguyen, Bao N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-ca834a2c3eb010865caa0093d3243936b2dd135bfe3c3f6451acf2c0e022d4133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computing time</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Mathematical models</topic><topic>Nucleophiles</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Principal components analysis</topic><topic>Reactivity</topic><topic>Selectivity</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boobier, Samuel</creatorcontrib><creatorcontrib>Liu, Yufeng</creatorcontrib><creatorcontrib>Sharma, Krishna</creatorcontrib><creatorcontrib>Hose, David R. J</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Nguyen, Bao N</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boobier, Samuel</au><au>Liu, Yufeng</au><au>Sharma, Krishna</au><au>Hose, David R. J</au><au>Blacker, A. John</au><au>Kapur, Nikil</au><au>Nguyen, Bao N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>61</volume><issue>10</issue><spage>4890</spage><epage>4899</epage><pages>4890-4899</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Solvent-dependent reactivity is a key aspect of synthetic science, which controls reaction selectivity. The contemporary focus on new, sustainable solvents highlights a need for reactivity predictions in different solvents. Herein, we report the excellent machine learning prediction of the nucleophilicity parameter N in the four most-common solvents for nucleophiles in the Mayr’s reactivity parameter database (R 2 = 0.93 and 81.6% of predictions within ±2.0 of the experimental values with Extra Trees algorithm). A Causal Structure Property Relationship (CSPR) approach was utilized, with focus on the physicochemical relationships between the descriptors and the predicted parameters, and on rational improvements of the prediction models. The nucleophiles were represented with a series of electronic and steric descriptors and the solvents were represented with principal component analysis (PCA) descriptors based on the ACS Solvent Tool. The models indicated that steric factors do not contribute significantly, because of bias in the experimental database. The most important descriptors are solvent-dependent HOMO energy and Hirshfeld charge of the nucleophilic atom. Replacing DFT descriptors with Parameterization Method 6 (PM6) descriptors for the nucleophiles led to an 8.7-fold decrease in computational time, and an ∼10% decrease in the percentage of predictions within ±2.0 and ±1.0 of the experimental values.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.1c00610</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0002-0254-025X</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2021-10, Vol.61 (10), p.4890-4899
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2575377299
source American Chemical Society Journals
subjects Algorithms
Computing time
Machine learning
Machine Learning and Deep Learning
Mathematical models
Nucleophiles
Parameterization
Parameters
Prediction models
Predictions
Principal components analysis
Reactivity
Selectivity
Solvents
title Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A53%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Solvent-Dependent%20Nucleophilicity%20Parameter%20with%20a%20Causal%20Structure%20Property%20Relationship&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Boobier,%20Samuel&rft.date=2021-10-25&rft.volume=61&rft.issue=10&rft.spage=4890&rft.epage=4899&rft.pages=4890-4899&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.1c00610&rft_dat=%3Cproquest_cross%3E2587197263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2587197263&rft_id=info:pmid/&rfr_iscdi=true