Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis

Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of allergy and clinical immunology in practice (Cambridge, MA) MA), 2022-01, Vol.10 (1), p.277-283
Hauptverfasser: Fujimoto, Atsushi, Iwai, Yuki, Ishikawa, Takashi, Shinkuma, Satoru, Shido, Kosuke, Yamasaki, Kenshi, Fujisawa, Yasuhiro, Fujimoto, Manabu, Muramatsu, Shogo, Abe, Riichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 283
container_issue 1
container_start_page 277
container_title The journal of allergy and clinical immunology in practice (Cambridge, MA)
container_volume 10
creator Fujimoto, Atsushi
Iwai, Yuki
Ishikawa, Takashi
Shinkuma, Satoru
Shido, Kosuke
Yamasaki, Kenshi
Fujisawa, Yasuhiro
Fujimoto, Manabu
Muramatsu, Shogo
Abe, Riichiro
description Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.
doi_str_mv 10.1016/j.jaip.2021.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575367166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213219821010059</els_id><sourcerecordid>2616947128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqCDgC_RQWeLSS4LtxM5a4oJgyx8heoCeLa89pk6TONgJ7X77elngwIG5zBx-72lmHkJfKSkpoeK4LVvtx5IRRksiS0LrT2iPMVoVjBH6-XWmcrGLDlNqSa4FbUhNvqDdquZ1wyuxh-w5wIhvYY66y236G-If7ELESx27Nb7q9QPgc68fhpB8wsHhuwmeYEjFdfg9pDDgu_VgY-jh-D788wYvR28h9s9uJoZunWUHaMfpLsHhS99Hv34s788ui5ufF1dnpzeFqTmZCm65E9zpvPmCOCqJoQ6MdNKBJLbRotYrBlyuRMVF1TTOCWDCcGedFnpVVfvo-9Z3jOFxhjSp3icDXacHCHNSjG-ObqgQGT16h7ZhjkPeTjFBhawbyhaZYlsqX5JSBKfG6Hsd14oStYlBtWoTg9rEoIhUOYYs-vZiPa96sG-S16dn4GQLQP7Fk4eokvEwGLA-gpmUDf4j__-ywZjK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616947128</pqid></control><display><type>article</type><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</creator><creatorcontrib>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</creatorcontrib><description>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P &lt; .0001) and 27.8% (95% CI, 22.6-32.5; P &lt; .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P &lt; .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P &lt; .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</description><identifier>ISSN: 2213-2198</identifier><identifier>EISSN: 2213-2201</identifier><identifier>DOI: 10.1016/j.jaip.2021.09.014</identifier><identifier>PMID: 34547536</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Artificial intelligence ; Classification ; Cutaneous adverse drug reaction ; Datasets ; Deep convolutional neural network ; Deep learning ; Dermatology ; Diagnosis ; Early Diagnosis ; Erythema ; Health facilities ; Humans ; Image diagnosis ; Medical diagnosis ; Mortality ; Neural networks ; Neural Networks, Computer ; Patients ; Physicians ; Primary care ; Skin ; Skin diseases ; Statistical analysis ; Stevens-Johnson syndrome ; Stevens-Johnson Syndrome - diagnosis ; Stevens-Johnson syndrome/toxic epidermal necrolysis ; Toxic epidermal necrolysis</subject><ispartof>The journal of allergy and clinical immunology in practice (Cambridge, MA), 2022-01, Vol.10 (1), p.277-283</ispartof><rights>2021 American Academy of Allergy, Asthma &amp; Immunology</rights><rights>Copyright © 2021 American Academy of Allergy, Asthma &amp; Immunology. Published by Elsevier Inc. All rights reserved.</rights><rights>2021. American Academy of Allergy, Asthma &amp; Immunology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</citedby><cites>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34547536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujimoto, Atsushi</creatorcontrib><creatorcontrib>Iwai, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Shinkuma, Satoru</creatorcontrib><creatorcontrib>Shido, Kosuke</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Fujisawa, Yasuhiro</creatorcontrib><creatorcontrib>Fujimoto, Manabu</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Abe, Riichiro</creatorcontrib><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><title>The journal of allergy and clinical immunology in practice (Cambridge, MA)</title><addtitle>J Allergy Clin Immunol Pract</addtitle><description>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P &lt; .0001) and 27.8% (95% CI, 22.6-32.5; P &lt; .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P &lt; .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P &lt; .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Cutaneous adverse drug reaction</subject><subject>Datasets</subject><subject>Deep convolutional neural network</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Diagnosis</subject><subject>Early Diagnosis</subject><subject>Erythema</subject><subject>Health facilities</subject><subject>Humans</subject><subject>Image diagnosis</subject><subject>Medical diagnosis</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Patients</subject><subject>Physicians</subject><subject>Primary care</subject><subject>Skin</subject><subject>Skin diseases</subject><subject>Statistical analysis</subject><subject>Stevens-Johnson syndrome</subject><subject>Stevens-Johnson Syndrome - diagnosis</subject><subject>Stevens-Johnson syndrome/toxic epidermal necrolysis</subject><subject>Toxic epidermal necrolysis</subject><issn>2213-2198</issn><issn>2213-2201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxa2qqCDgC_RQWeLSS4LtxM5a4oJgyx8heoCeLa89pk6TONgJ7X77elngwIG5zBx-72lmHkJfKSkpoeK4LVvtx5IRRksiS0LrT2iPMVoVjBH6-XWmcrGLDlNqSa4FbUhNvqDdquZ1wyuxh-w5wIhvYY66y236G-If7ELESx27Nb7q9QPgc68fhpB8wsHhuwmeYEjFdfg9pDDgu_VgY-jh-D788wYvR28h9s9uJoZunWUHaMfpLsHhS99Hv34s788ui5ufF1dnpzeFqTmZCm65E9zpvPmCOCqJoQ6MdNKBJLbRotYrBlyuRMVF1TTOCWDCcGedFnpVVfvo-9Z3jOFxhjSp3icDXacHCHNSjG-ObqgQGT16h7ZhjkPeTjFBhawbyhaZYlsqX5JSBKfG6Hsd14oStYlBtWoTg9rEoIhUOYYs-vZiPa96sG-S16dn4GQLQP7Fk4eokvEwGLA-gpmUDf4j__-ywZjK</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Fujimoto, Atsushi</creator><creator>Iwai, Yuki</creator><creator>Ishikawa, Takashi</creator><creator>Shinkuma, Satoru</creator><creator>Shido, Kosuke</creator><creator>Yamasaki, Kenshi</creator><creator>Fujisawa, Yasuhiro</creator><creator>Fujimoto, Manabu</creator><creator>Muramatsu, Shogo</creator><creator>Abe, Riichiro</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><author>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Cutaneous adverse drug reaction</topic><topic>Datasets</topic><topic>Deep convolutional neural network</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Diagnosis</topic><topic>Early Diagnosis</topic><topic>Erythema</topic><topic>Health facilities</topic><topic>Humans</topic><topic>Image diagnosis</topic><topic>Medical diagnosis</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Patients</topic><topic>Physicians</topic><topic>Primary care</topic><topic>Skin</topic><topic>Skin diseases</topic><topic>Statistical analysis</topic><topic>Stevens-Johnson syndrome</topic><topic>Stevens-Johnson Syndrome - diagnosis</topic><topic>Stevens-Johnson syndrome/toxic epidermal necrolysis</topic><topic>Toxic epidermal necrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimoto, Atsushi</creatorcontrib><creatorcontrib>Iwai, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Shinkuma, Satoru</creatorcontrib><creatorcontrib>Shido, Kosuke</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Fujisawa, Yasuhiro</creatorcontrib><creatorcontrib>Fujimoto, Manabu</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Abe, Riichiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of allergy and clinical immunology in practice (Cambridge, MA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimoto, Atsushi</au><au>Iwai, Yuki</au><au>Ishikawa, Takashi</au><au>Shinkuma, Satoru</au><au>Shido, Kosuke</au><au>Yamasaki, Kenshi</au><au>Fujisawa, Yasuhiro</au><au>Fujimoto, Manabu</au><au>Muramatsu, Shogo</au><au>Abe, Riichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</atitle><jtitle>The journal of allergy and clinical immunology in practice (Cambridge, MA)</jtitle><addtitle>J Allergy Clin Immunol Pract</addtitle><date>2022-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>2213-2198</issn><eissn>2213-2201</eissn><abstract>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P &lt; .0001) and 27.8% (95% CI, 22.6-32.5; P &lt; .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P &lt; .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P &lt; .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34547536</pmid><doi>10.1016/j.jaip.2021.09.014</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2213-2198
ispartof The journal of allergy and clinical immunology in practice (Cambridge, MA), 2022-01, Vol.10 (1), p.277-283
issn 2213-2198
2213-2201
language eng
recordid cdi_proquest_miscellaneous_2575367166
source MEDLINE; Alma/SFX Local Collection
subjects Accuracy
Artificial intelligence
Classification
Cutaneous adverse drug reaction
Datasets
Deep convolutional neural network
Deep learning
Dermatology
Diagnosis
Early Diagnosis
Erythema
Health facilities
Humans
Image diagnosis
Medical diagnosis
Mortality
Neural networks
Neural Networks, Computer
Patients
Physicians
Primary care
Skin
Skin diseases
Statistical analysis
Stevens-Johnson syndrome
Stevens-Johnson Syndrome - diagnosis
Stevens-Johnson syndrome/toxic epidermal necrolysis
Toxic epidermal necrolysis
title Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20for%20Early%20Image%20Diagnosis%20of%20Stevens-Johnson%20Syndrome/Toxic%20Epidermal%20Necrolysis&rft.jtitle=The%20journal%20of%20allergy%20and%20clinical%20immunology%20in%20practice%20(Cambridge,%20MA)&rft.au=Fujimoto,%20Atsushi&rft.date=2022-01&rft.volume=10&rft.issue=1&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=2213-2198&rft.eissn=2213-2201&rft_id=info:doi/10.1016/j.jaip.2021.09.014&rft_dat=%3Cproquest_cross%3E2616947128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616947128&rft_id=info:pmid/34547536&rft_els_id=S2213219821010059&rfr_iscdi=true