Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis
Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis...
Gespeichert in:
Veröffentlicht in: | The journal of allergy and clinical immunology in practice (Cambridge, MA) MA), 2022-01, Vol.10 (1), p.277-283 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 283 |
---|---|
container_issue | 1 |
container_start_page | 277 |
container_title | The journal of allergy and clinical immunology in practice (Cambridge, MA) |
container_volume | 10 |
creator | Fujimoto, Atsushi Iwai, Yuki Ishikawa, Takashi Shinkuma, Satoru Shido, Kosuke Yamasaki, Kenshi Fujisawa, Yasuhiro Fujimoto, Manabu Muramatsu, Shogo Abe, Riichiro |
description | Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease.
To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN).
We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists.
The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists.
We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images. |
doi_str_mv | 10.1016/j.jaip.2021.09.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2575367166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213219821010059</els_id><sourcerecordid>2616947128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqCDgC_RQWeLSS4LtxM5a4oJgyx8heoCeLa89pk6TONgJ7X77elngwIG5zBx-72lmHkJfKSkpoeK4LVvtx5IRRksiS0LrT2iPMVoVjBH6-XWmcrGLDlNqSa4FbUhNvqDdquZ1wyuxh-w5wIhvYY66y236G-If7ELESx27Nb7q9QPgc68fhpB8wsHhuwmeYEjFdfg9pDDgu_VgY-jh-D788wYvR28h9s9uJoZunWUHaMfpLsHhS99Hv34s788ui5ufF1dnpzeFqTmZCm65E9zpvPmCOCqJoQ6MdNKBJLbRotYrBlyuRMVF1TTOCWDCcGedFnpVVfvo-9Z3jOFxhjSp3icDXacHCHNSjG-ObqgQGT16h7ZhjkPeTjFBhawbyhaZYlsqX5JSBKfG6Hsd14oStYlBtWoTg9rEoIhUOYYs-vZiPa96sG-S16dn4GQLQP7Fk4eokvEwGLA-gpmUDf4j__-ywZjK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616947128</pqid></control><display><type>article</type><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</creator><creatorcontrib>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</creatorcontrib><description>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease.
To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN).
We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists.
The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists.
We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</description><identifier>ISSN: 2213-2198</identifier><identifier>EISSN: 2213-2201</identifier><identifier>DOI: 10.1016/j.jaip.2021.09.014</identifier><identifier>PMID: 34547536</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Accuracy ; Artificial intelligence ; Classification ; Cutaneous adverse drug reaction ; Datasets ; Deep convolutional neural network ; Deep learning ; Dermatology ; Diagnosis ; Early Diagnosis ; Erythema ; Health facilities ; Humans ; Image diagnosis ; Medical diagnosis ; Mortality ; Neural networks ; Neural Networks, Computer ; Patients ; Physicians ; Primary care ; Skin ; Skin diseases ; Statistical analysis ; Stevens-Johnson syndrome ; Stevens-Johnson Syndrome - diagnosis ; Stevens-Johnson syndrome/toxic epidermal necrolysis ; Toxic epidermal necrolysis</subject><ispartof>The journal of allergy and clinical immunology in practice (Cambridge, MA), 2022-01, Vol.10 (1), p.277-283</ispartof><rights>2021 American Academy of Allergy, Asthma & Immunology</rights><rights>Copyright © 2021 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.</rights><rights>2021. American Academy of Allergy, Asthma & Immunology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</citedby><cites>FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34547536$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujimoto, Atsushi</creatorcontrib><creatorcontrib>Iwai, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Shinkuma, Satoru</creatorcontrib><creatorcontrib>Shido, Kosuke</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Fujisawa, Yasuhiro</creatorcontrib><creatorcontrib>Fujimoto, Manabu</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Abe, Riichiro</creatorcontrib><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><title>The journal of allergy and clinical immunology in practice (Cambridge, MA)</title><addtitle>J Allergy Clin Immunol Pract</addtitle><description>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease.
To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN).
We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists.
The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists.
We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Cutaneous adverse drug reaction</subject><subject>Datasets</subject><subject>Deep convolutional neural network</subject><subject>Deep learning</subject><subject>Dermatology</subject><subject>Diagnosis</subject><subject>Early Diagnosis</subject><subject>Erythema</subject><subject>Health facilities</subject><subject>Humans</subject><subject>Image diagnosis</subject><subject>Medical diagnosis</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Patients</subject><subject>Physicians</subject><subject>Primary care</subject><subject>Skin</subject><subject>Skin diseases</subject><subject>Statistical analysis</subject><subject>Stevens-Johnson syndrome</subject><subject>Stevens-Johnson Syndrome - diagnosis</subject><subject>Stevens-Johnson syndrome/toxic epidermal necrolysis</subject><subject>Toxic epidermal necrolysis</subject><issn>2213-2198</issn><issn>2213-2201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxa2qqCDgC_RQWeLSS4LtxM5a4oJgyx8heoCeLa89pk6TONgJ7X77elngwIG5zBx-72lmHkJfKSkpoeK4LVvtx5IRRksiS0LrT2iPMVoVjBH6-XWmcrGLDlNqSa4FbUhNvqDdquZ1wyuxh-w5wIhvYY66y236G-If7ELESx27Nb7q9QPgc68fhpB8wsHhuwmeYEjFdfg9pDDgu_VgY-jh-D788wYvR28h9s9uJoZunWUHaMfpLsHhS99Hv34s788ui5ufF1dnpzeFqTmZCm65E9zpvPmCOCqJoQ6MdNKBJLbRotYrBlyuRMVF1TTOCWDCcGedFnpVVfvo-9Z3jOFxhjSp3icDXacHCHNSjG-ObqgQGT16h7ZhjkPeTjFBhawbyhaZYlsqX5JSBKfG6Hsd14oStYlBtWoTg9rEoIhUOYYs-vZiPa96sG-S16dn4GQLQP7Fk4eokvEwGLA-gpmUDf4j__-ywZjK</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Fujimoto, Atsushi</creator><creator>Iwai, Yuki</creator><creator>Ishikawa, Takashi</creator><creator>Shinkuma, Satoru</creator><creator>Shido, Kosuke</creator><creator>Yamasaki, Kenshi</creator><creator>Fujisawa, Yasuhiro</creator><creator>Fujimoto, Manabu</creator><creator>Muramatsu, Shogo</creator><creator>Abe, Riichiro</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>202201</creationdate><title>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</title><author>Fujimoto, Atsushi ; Iwai, Yuki ; Ishikawa, Takashi ; Shinkuma, Satoru ; Shido, Kosuke ; Yamasaki, Kenshi ; Fujisawa, Yasuhiro ; Fujimoto, Manabu ; Muramatsu, Shogo ; Abe, Riichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-5d5f65fa22180f190c1fec9f9fe90d7a64ab2e59b6356377ff6e26c5fdfa6ab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Cutaneous adverse drug reaction</topic><topic>Datasets</topic><topic>Deep convolutional neural network</topic><topic>Deep learning</topic><topic>Dermatology</topic><topic>Diagnosis</topic><topic>Early Diagnosis</topic><topic>Erythema</topic><topic>Health facilities</topic><topic>Humans</topic><topic>Image diagnosis</topic><topic>Medical diagnosis</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Patients</topic><topic>Physicians</topic><topic>Primary care</topic><topic>Skin</topic><topic>Skin diseases</topic><topic>Statistical analysis</topic><topic>Stevens-Johnson syndrome</topic><topic>Stevens-Johnson Syndrome - diagnosis</topic><topic>Stevens-Johnson syndrome/toxic epidermal necrolysis</topic><topic>Toxic epidermal necrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujimoto, Atsushi</creatorcontrib><creatorcontrib>Iwai, Yuki</creatorcontrib><creatorcontrib>Ishikawa, Takashi</creatorcontrib><creatorcontrib>Shinkuma, Satoru</creatorcontrib><creatorcontrib>Shido, Kosuke</creatorcontrib><creatorcontrib>Yamasaki, Kenshi</creatorcontrib><creatorcontrib>Fujisawa, Yasuhiro</creatorcontrib><creatorcontrib>Fujimoto, Manabu</creatorcontrib><creatorcontrib>Muramatsu, Shogo</creatorcontrib><creatorcontrib>Abe, Riichiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of allergy and clinical immunology in practice (Cambridge, MA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujimoto, Atsushi</au><au>Iwai, Yuki</au><au>Ishikawa, Takashi</au><au>Shinkuma, Satoru</au><au>Shido, Kosuke</au><au>Yamasaki, Kenshi</au><au>Fujisawa, Yasuhiro</au><au>Fujimoto, Manabu</au><au>Muramatsu, Shogo</au><au>Abe, Riichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis</atitle><jtitle>The journal of allergy and clinical immunology in practice (Cambridge, MA)</jtitle><addtitle>J Allergy Clin Immunol Pract</addtitle><date>2022-01</date><risdate>2022</risdate><volume>10</volume><issue>1</issue><spage>277</spage><epage>283</epage><pages>277-283</pages><issn>2213-2198</issn><eissn>2213-2201</eissn><abstract>Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease.
To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN).
We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists.
The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists.
We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34547536</pmid><doi>10.1016/j.jaip.2021.09.014</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-2198 |
ispartof | The journal of allergy and clinical immunology in practice (Cambridge, MA), 2022-01, Vol.10 (1), p.277-283 |
issn | 2213-2198 2213-2201 |
language | eng |
recordid | cdi_proquest_miscellaneous_2575367166 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Accuracy Artificial intelligence Classification Cutaneous adverse drug reaction Datasets Deep convolutional neural network Deep learning Dermatology Diagnosis Early Diagnosis Erythema Health facilities Humans Image diagnosis Medical diagnosis Mortality Neural networks Neural Networks, Computer Patients Physicians Primary care Skin Skin diseases Statistical analysis Stevens-Johnson syndrome Stevens-Johnson Syndrome - diagnosis Stevens-Johnson syndrome/toxic epidermal necrolysis Toxic epidermal necrolysis |
title | Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A02%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20for%20Early%20Image%20Diagnosis%20of%20Stevens-Johnson%20Syndrome/Toxic%20Epidermal%20Necrolysis&rft.jtitle=The%20journal%20of%20allergy%20and%20clinical%20immunology%20in%20practice%20(Cambridge,%20MA)&rft.au=Fujimoto,%20Atsushi&rft.date=2022-01&rft.volume=10&rft.issue=1&rft.spage=277&rft.epage=283&rft.pages=277-283&rft.issn=2213-2198&rft.eissn=2213-2201&rft_id=info:doi/10.1016/j.jaip.2021.09.014&rft_dat=%3Cproquest_cross%3E2616947128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616947128&rft_id=info:pmid/34547536&rft_els_id=S2213219821010059&rfr_iscdi=true |