Variable selection in the chemometric treatment of food data: A tutorial review
•Instrumental analysis of food generates of a large volume of information per sample.•Discarding non-informative and/or redundant signals through variable selection.•A new categorization of the different variable selection strategies is presented.•Details about variable selection with applications i...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2022-02, Vol.370, p.131072-131072, Article 131072 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131072 |
---|---|
container_issue | |
container_start_page | 131072 |
container_title | Food chemistry |
container_volume | 370 |
creator | de Araújo Gomes, Adriano Azcarate, Silvana M. Diniz, Paulo Henrique Gonçalves Dias de Sousa Fernandes, David Douglas Veras, Germano |
description | •Instrumental analysis of food generates of a large volume of information per sample.•Discarding non-informative and/or redundant signals through variable selection.•A new categorization of the different variable selection strategies is presented.•Details about variable selection with applications in food analysis are shown.•Variable selection-based models have similar or better figures of merit.
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices. |
doi_str_mv | 10.1016/j.foodchem.2021.131072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574741657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814621020781</els_id><sourcerecordid>2574741657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-748a7543f667940a897cf78353674cd82b04cb7d35e946c5b67fcee20bc13f133</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EoqXwCpVHlgQ7dmyXiariJlXqAqyW45yorpK42C6ItydVW1amc4b_ov9DaEpJTgkVd5u88b62a-jyghQ0p4wSWZyhMVWSZXL4z9GYMKIyRbkYoasYN4SQglB1iUaMl0xyxsdo9WGCM1ULOEILNjnfY9fjtAa8D_cdpOAsTgFM6qBP2Dd434xrk8w9nuO0S35IaHGALwff1-iiMW2Em-OdoPenx7fFS7ZcPb8u5svMMqFSJrkysuSsEULOODFqJm0jFSuZkNzWqqgIt5WsWQkzLmxZCdlYgIJUlrKGMjZBt4fcbfCfO4hJdy5aaFvTg99FXZSSS05FKQepOEht8DEGaPQ2uM6EH02J3sPUG32Cqfcw9QHmYJweO3ZVB_Wf7URvEDwcBDAsHdYHHa2D3kLtwsBS19791_ELXJaIIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574741657</pqid></control><display><type>article</type><title>Variable selection in the chemometric treatment of food data: A tutorial review</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>de Araújo Gomes, Adriano ; Azcarate, Silvana M. ; Diniz, Paulo Henrique Gonçalves Dias ; de Sousa Fernandes, David Douglas ; Veras, Germano</creator><creatorcontrib>de Araújo Gomes, Adriano ; Azcarate, Silvana M. ; Diniz, Paulo Henrique Gonçalves Dias ; de Sousa Fernandes, David Douglas ; Veras, Germano</creatorcontrib><description>•Instrumental analysis of food generates of a large volume of information per sample.•Discarding non-informative and/or redundant signals through variable selection.•A new categorization of the different variable selection strategies is presented.•Details about variable selection with applications in food analysis are shown.•Variable selection-based models have similar or better figures of merit.
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2021.131072</identifier><identifier>PMID: 34537434</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Chemometrics ; Feature selection ; Food Analysis ; Food fraud ; Fraud ; Multivariate calibration ; Pattern recognition</subject><ispartof>Food chemistry, 2022-02, Vol.370, p.131072-131072, Article 131072</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-748a7543f667940a897cf78353674cd82b04cb7d35e946c5b67fcee20bc13f133</citedby><cites>FETCH-LOGICAL-c368t-748a7543f667940a897cf78353674cd82b04cb7d35e946c5b67fcee20bc13f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.foodchem.2021.131072$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34537434$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Araújo Gomes, Adriano</creatorcontrib><creatorcontrib>Azcarate, Silvana M.</creatorcontrib><creatorcontrib>Diniz, Paulo Henrique Gonçalves Dias</creatorcontrib><creatorcontrib>de Sousa Fernandes, David Douglas</creatorcontrib><creatorcontrib>Veras, Germano</creatorcontrib><title>Variable selection in the chemometric treatment of food data: A tutorial review</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>•Instrumental analysis of food generates of a large volume of information per sample.•Discarding non-informative and/or redundant signals through variable selection.•A new categorization of the different variable selection strategies is presented.•Details about variable selection with applications in food analysis are shown.•Variable selection-based models have similar or better figures of merit.
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices.</description><subject>Chemometrics</subject><subject>Feature selection</subject><subject>Food Analysis</subject><subject>Food fraud</subject><subject>Fraud</subject><subject>Multivariate calibration</subject><subject>Pattern recognition</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkLtOwzAUhi0EoqXwCpVHlgQ7dmyXiariJlXqAqyW45yorpK42C6ItydVW1amc4b_ov9DaEpJTgkVd5u88b62a-jyghQ0p4wSWZyhMVWSZXL4z9GYMKIyRbkYoasYN4SQglB1iUaMl0xyxsdo9WGCM1ULOEILNjnfY9fjtAa8D_cdpOAsTgFM6qBP2Dd434xrk8w9nuO0S35IaHGALwff1-iiMW2Em-OdoPenx7fFS7ZcPb8u5svMMqFSJrkysuSsEULOODFqJm0jFSuZkNzWqqgIt5WsWQkzLmxZCdlYgIJUlrKGMjZBt4fcbfCfO4hJdy5aaFvTg99FXZSSS05FKQepOEht8DEGaPQ2uM6EH02J3sPUG32Cqfcw9QHmYJweO3ZVB_Wf7URvEDwcBDAsHdYHHa2D3kLtwsBS19791_ELXJaIIA</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>de Araújo Gomes, Adriano</creator><creator>Azcarate, Silvana M.</creator><creator>Diniz, Paulo Henrique Gonçalves Dias</creator><creator>de Sousa Fernandes, David Douglas</creator><creator>Veras, Germano</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220215</creationdate><title>Variable selection in the chemometric treatment of food data: A tutorial review</title><author>de Araújo Gomes, Adriano ; Azcarate, Silvana M. ; Diniz, Paulo Henrique Gonçalves Dias ; de Sousa Fernandes, David Douglas ; Veras, Germano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-748a7543f667940a897cf78353674cd82b04cb7d35e946c5b67fcee20bc13f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemometrics</topic><topic>Feature selection</topic><topic>Food Analysis</topic><topic>Food fraud</topic><topic>Fraud</topic><topic>Multivariate calibration</topic><topic>Pattern recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Araújo Gomes, Adriano</creatorcontrib><creatorcontrib>Azcarate, Silvana M.</creatorcontrib><creatorcontrib>Diniz, Paulo Henrique Gonçalves Dias</creatorcontrib><creatorcontrib>de Sousa Fernandes, David Douglas</creatorcontrib><creatorcontrib>Veras, Germano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Araújo Gomes, Adriano</au><au>Azcarate, Silvana M.</au><au>Diniz, Paulo Henrique Gonçalves Dias</au><au>de Sousa Fernandes, David Douglas</au><au>Veras, Germano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable selection in the chemometric treatment of food data: A tutorial review</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2022-02-15</date><risdate>2022</risdate><volume>370</volume><spage>131072</spage><epage>131072</epage><pages>131072-131072</pages><artnum>131072</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>•Instrumental analysis of food generates of a large volume of information per sample.•Discarding non-informative and/or redundant signals through variable selection.•A new categorization of the different variable selection strategies is presented.•Details about variable selection with applications in food analysis are shown.•Variable selection-based models have similar or better figures of merit.
Food analysis covers aspects of quality and detection of possible frauds to ensure the integrity of the food. The arsenal of analytical instruments available for food analysis is broad and allows the generation of a large volume of information per sample. But this instrumental information may not yet give the desired answer; it must be processed to provide a final answer for decision making. The possibility of discarding non-informative and/or redundant signals can lead to models of better accuracy, robustness, and chemical interpretability, in line with the principle of parsimony. Thus, in this tutorial review, we cover aspects of variable selection in food analysis, including definitions, theoretical aspects of variable selection, and case studies showing the advantages of variable selection-based models concerning the use of a wide range of non-informative and redundant instrumental information in the analysis of food matrices.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34537434</pmid><doi>10.1016/j.foodchem.2021.131072</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-8146 |
ispartof | Food chemistry, 2022-02, Vol.370, p.131072-131072, Article 131072 |
issn | 0308-8146 1873-7072 |
language | eng |
recordid | cdi_proquest_miscellaneous_2574741657 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Chemometrics Feature selection Food Analysis Food fraud Fraud Multivariate calibration Pattern recognition |
title | Variable selection in the chemometric treatment of food data: A tutorial review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T19%3A25%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20selection%20in%20the%20chemometric%20treatment%20of%20food%20data:%20A%20tutorial%20review&rft.jtitle=Food%20chemistry&rft.au=de%20Ara%C3%BAjo%20Gomes,%20Adriano&rft.date=2022-02-15&rft.volume=370&rft.spage=131072&rft.epage=131072&rft.pages=131072-131072&rft.artnum=131072&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2021.131072&rft_dat=%3Cproquest_cross%3E2574741657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574741657&rft_id=info:pmid/34537434&rft_els_id=S0308814621020781&rfr_iscdi=true |