Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer
Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electroni...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-10, Vol.17 (42), p.e2102668-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2102668 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 17 |
creator | Blanton, Eric W. Motala, Michael J. Prusnick, Timothy A. Hilton, Albert Brown, Jeff L. Bhattacharyya, Arkka Krishnamoorthy, Sriram Leedy, Kevin Glavin, Nicholas R. Snure, Michael |
description | Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III‐nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)‐on‐sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate–film interface and leaves a smooth surface suitable for vdW bonding. A tensilely stressed Ni layer sputtered on top of the film induces controlled spalling fracture that propagates at the BN/sapphire interface. By incorporating controlled spalling, the process yield and sensitivity are greatly improved, owed to the greater fracture energy provided by the stressed metal layer relative to a soft tape or rubber stamp. With stress playing a critical role in this process, the influence of residual stress on detrimental cracking and bowing is investigated. Additionally, a back‐end selected area lift‐off technique is developed which allows for isolation and transfer of individual devices or arbitrary shapes.
A versatile technique for exfoliating and transferring electronic films and devices is presented. A variety of films as well as complex high‐performance devices can be transferred, paving the way for increased system performance and functionality. Film and device characterization reveal unique strain‐related challenges and solutions. This technique can potentially enable new heterogeneous integration electronics packaging strategies. |
doi_str_mv | 10.1002/smll.202102668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574737666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583760770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3508-d826960a2d0c30cdce3e7acf2d536b034d1d1fe4362c5eae3894be35296db5733</originalsourceid><addsrcrecordid>eNqF0M1KAzEUBeBBFKzVreuAGzet-ZnJzCyltFoYEWyLy5AmNzIlk6lJR-nOR_AZfRJTKhXcuMolfOdyOUlySfCQYExvQmPtkGJKMOW8OEp6hBM24AUtjw8zwafJWQgrjBmhad5LxGwtra3dy9fH59TpToFGVW02rTFIOo3mXrpgwKPWoLEFtfGtqxWa1LYJaBFiEEn0Jh3S0TxLaQN6AgsyAKrkFvx5cmLiJ1z8vP1kMRnPR_eD6vFuOrqtBopluBjogvKSY0k1VgwrrYBBLpWhOmN8iVmqiSYGUsapykACK8p0CSyjJdfLLGesn1zv9659-9pB2IimDgqslQ7aLgia5WnOcs55pFd_6KrtvIvXRVVEg_McRzXcK-XbEDwYsfZ1I_1WECx2fYtd3-LQdwyU-8B7bWH7jxazh6r6zX4DrLyEsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583760770</pqid></control><display><type>article</type><title>Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Blanton, Eric W. ; Motala, Michael J. ; Prusnick, Timothy A. ; Hilton, Albert ; Brown, Jeff L. ; Bhattacharyya, Arkka ; Krishnamoorthy, Sriram ; Leedy, Kevin ; Glavin, Nicholas R. ; Snure, Michael</creator><creatorcontrib>Blanton, Eric W. ; Motala, Michael J. ; Prusnick, Timothy A. ; Hilton, Albert ; Brown, Jeff L. ; Bhattacharyya, Arkka ; Krishnamoorthy, Sriram ; Leedy, Kevin ; Glavin, Nicholas R. ; Snure, Michael</creatorcontrib><description>Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III‐nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)‐on‐sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate–film interface and leaves a smooth surface suitable for vdW bonding. A tensilely stressed Ni layer sputtered on top of the film induces controlled spalling fracture that propagates at the BN/sapphire interface. By incorporating controlled spalling, the process yield and sensitivity are greatly improved, owed to the greater fracture energy provided by the stressed metal layer relative to a soft tape or rubber stamp. With stress playing a critical role in this process, the influence of residual stress on detrimental cracking and bowing is investigated. Additionally, a back‐end selected area lift‐off technique is developed which allows for isolation and transfer of individual devices or arbitrary shapes.
A versatile technique for exfoliating and transferring electronic films and devices is presented. A variety of films as well as complex high‐performance devices can be transferred, paving the way for increased system performance and functionality. Film and device characterization reveal unique strain‐related challenges and solutions. This technique can potentially enable new heterogeneous integration electronics packaging strategies.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202102668</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Boron nitride ; Bowing ; Electric vehicles ; HEMTs ; heterogeneous integration ; Medical equipment ; Metal oxides ; Nanotechnology ; Residual stress ; Sapphire ; Spalling ; Substrates ; Thin films ; Two dimensional materials ; van der Waals release layers</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (42), p.e2102668-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3508-d826960a2d0c30cdce3e7acf2d536b034d1d1fe4362c5eae3894be35296db5733</citedby><cites>FETCH-LOGICAL-c3508-d826960a2d0c30cdce3e7acf2d536b034d1d1fe4362c5eae3894be35296db5733</cites><orcidid>0000-0002-3928-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202102668$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202102668$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Blanton, Eric W.</creatorcontrib><creatorcontrib>Motala, Michael J.</creatorcontrib><creatorcontrib>Prusnick, Timothy A.</creatorcontrib><creatorcontrib>Hilton, Albert</creatorcontrib><creatorcontrib>Brown, Jeff L.</creatorcontrib><creatorcontrib>Bhattacharyya, Arkka</creatorcontrib><creatorcontrib>Krishnamoorthy, Sriram</creatorcontrib><creatorcontrib>Leedy, Kevin</creatorcontrib><creatorcontrib>Glavin, Nicholas R.</creatorcontrib><creatorcontrib>Snure, Michael</creatorcontrib><title>Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><description>Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III‐nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)‐on‐sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate–film interface and leaves a smooth surface suitable for vdW bonding. A tensilely stressed Ni layer sputtered on top of the film induces controlled spalling fracture that propagates at the BN/sapphire interface. By incorporating controlled spalling, the process yield and sensitivity are greatly improved, owed to the greater fracture energy provided by the stressed metal layer relative to a soft tape or rubber stamp. With stress playing a critical role in this process, the influence of residual stress on detrimental cracking and bowing is investigated. Additionally, a back‐end selected area lift‐off technique is developed which allows for isolation and transfer of individual devices or arbitrary shapes.
A versatile technique for exfoliating and transferring electronic films and devices is presented. A variety of films as well as complex high‐performance devices can be transferred, paving the way for increased system performance and functionality. Film and device characterization reveal unique strain‐related challenges and solutions. This technique can potentially enable new heterogeneous integration electronics packaging strategies.</description><subject>Boron nitride</subject><subject>Bowing</subject><subject>Electric vehicles</subject><subject>HEMTs</subject><subject>heterogeneous integration</subject><subject>Medical equipment</subject><subject>Metal oxides</subject><subject>Nanotechnology</subject><subject>Residual stress</subject><subject>Sapphire</subject><subject>Spalling</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Two dimensional materials</subject><subject>van der Waals release layers</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqF0M1KAzEUBeBBFKzVreuAGzet-ZnJzCyltFoYEWyLy5AmNzIlk6lJR-nOR_AZfRJTKhXcuMolfOdyOUlySfCQYExvQmPtkGJKMOW8OEp6hBM24AUtjw8zwafJWQgrjBmhad5LxGwtra3dy9fH59TpToFGVW02rTFIOo3mXrpgwKPWoLEFtfGtqxWa1LYJaBFiEEn0Jh3S0TxLaQN6AgsyAKrkFvx5cmLiJ1z8vP1kMRnPR_eD6vFuOrqtBopluBjogvKSY0k1VgwrrYBBLpWhOmN8iVmqiSYGUsapykACK8p0CSyjJdfLLGesn1zv9659-9pB2IimDgqslQ7aLgia5WnOcs55pFd_6KrtvIvXRVVEg_McRzXcK-XbEDwYsfZ1I_1WECx2fYtd3-LQdwyU-8B7bWH7jxazh6r6zX4DrLyEsg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Blanton, Eric W.</creator><creator>Motala, Michael J.</creator><creator>Prusnick, Timothy A.</creator><creator>Hilton, Albert</creator><creator>Brown, Jeff L.</creator><creator>Bhattacharyya, Arkka</creator><creator>Krishnamoorthy, Sriram</creator><creator>Leedy, Kevin</creator><creator>Glavin, Nicholas R.</creator><creator>Snure, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3928-3402</orcidid></search><sort><creationdate>20211001</creationdate><title>Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer</title><author>Blanton, Eric W. ; Motala, Michael J. ; Prusnick, Timothy A. ; Hilton, Albert ; Brown, Jeff L. ; Bhattacharyya, Arkka ; Krishnamoorthy, Sriram ; Leedy, Kevin ; Glavin, Nicholas R. ; Snure, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3508-d826960a2d0c30cdce3e7acf2d536b034d1d1fe4362c5eae3894be35296db5733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boron nitride</topic><topic>Bowing</topic><topic>Electric vehicles</topic><topic>HEMTs</topic><topic>heterogeneous integration</topic><topic>Medical equipment</topic><topic>Metal oxides</topic><topic>Nanotechnology</topic><topic>Residual stress</topic><topic>Sapphire</topic><topic>Spalling</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Two dimensional materials</topic><topic>van der Waals release layers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blanton, Eric W.</creatorcontrib><creatorcontrib>Motala, Michael J.</creatorcontrib><creatorcontrib>Prusnick, Timothy A.</creatorcontrib><creatorcontrib>Hilton, Albert</creatorcontrib><creatorcontrib>Brown, Jeff L.</creatorcontrib><creatorcontrib>Bhattacharyya, Arkka</creatorcontrib><creatorcontrib>Krishnamoorthy, Sriram</creatorcontrib><creatorcontrib>Leedy, Kevin</creatorcontrib><creatorcontrib>Glavin, Nicholas R.</creatorcontrib><creatorcontrib>Snure, Michael</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blanton, Eric W.</au><au>Motala, Michael J.</au><au>Prusnick, Timothy A.</au><au>Hilton, Albert</au><au>Brown, Jeff L.</au><au>Bhattacharyya, Arkka</au><au>Krishnamoorthy, Sriram</au><au>Leedy, Kevin</au><au>Glavin, Nicholas R.</au><au>Snure, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>17</volume><issue>42</issue><spage>e2102668</spage><epage>n/a</epage><pages>e2102668-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III‐nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)‐on‐sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate–film interface and leaves a smooth surface suitable for vdW bonding. A tensilely stressed Ni layer sputtered on top of the film induces controlled spalling fracture that propagates at the BN/sapphire interface. By incorporating controlled spalling, the process yield and sensitivity are greatly improved, owed to the greater fracture energy provided by the stressed metal layer relative to a soft tape or rubber stamp. With stress playing a critical role in this process, the influence of residual stress on detrimental cracking and bowing is investigated. Additionally, a back‐end selected area lift‐off technique is developed which allows for isolation and transfer of individual devices or arbitrary shapes.
A versatile technique for exfoliating and transferring electronic films and devices is presented. A variety of films as well as complex high‐performance devices can be transferred, paving the way for increased system performance and functionality. Film and device characterization reveal unique strain‐related challenges and solutions. This technique can potentially enable new heterogeneous integration electronics packaging strategies.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/smll.202102668</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3928-3402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2021-10, Vol.17 (42), p.e2102668-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2574737666 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boron nitride Bowing Electric vehicles HEMTs heterogeneous integration Medical equipment Metal oxides Nanotechnology Residual stress Sapphire Spalling Substrates Thin films Two dimensional materials van der Waals release layers |
title | Spalling‐Induced Liftoff and Transfer of Electronic Films Using a van der Waals Release Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spalling%E2%80%90Induced%20Liftoff%20and%20Transfer%20of%20Electronic%20Films%20Using%20a%20van%20der%20Waals%20Release%20Layer&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Blanton,%20Eric%20W.&rft.date=2021-10-01&rft.volume=17&rft.issue=42&rft.spage=e2102668&rft.epage=n/a&rft.pages=e2102668-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202102668&rft_dat=%3Cproquest_cross%3E2583760770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583760770&rft_id=info:pmid/&rfr_iscdi=true |