A matching procedure for sequential experiments that iteratively learns which covariates improve power

We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2023-03, Vol.79 (1), p.216-229
Hauptverfasser: Kapelner, Adam, Krieger, Abba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 1
container_start_page 216
container_title Biometrics
container_volume 79
creator Kapelner, Adam
Krieger, Abba
description We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.
doi_str_mv 10.1111/biom.13561
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574406093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789219982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOj42foAE3IhQzbOPpQ6-QHGj4C6k6a2N9GXSzjh_b7SjCxdmc7lwOLkchA4pOaPhnee2a84olzHdQDMqBY2IYGQTzQghccQFfdlBu96_hTWThG2jHS4kl2nGZ6i8wI0eTGXbV9y7zkAxOsBl57CH9xHaweoaw0cPzjZh83io9IDtAE4PdgH1CtegXevxsrKmwqZbaGf1AB7bJvgWgPtuCW4fbZW69nCwnnvo-frqaX4b3T_e3M0v7iPDZUIjkNzkIiaiLJkhhaCGpUzEtCjzRGQmyXNKtMliSsGYVJOcS6EFKYrYFABJzvfQyeQNf4fz_aAa6w3UtW6hG71iMhGCxCTjAT3-g751o2vDdYolacZolqUsUKcTZVznvYNS9aGEditFifqqr77qq-_6AT5aK8e8geIX_ckdADoBS1vD6h-Vurx7fJikn5lzkXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789219982</pqid></control><display><type>article</type><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><source>Wiley-Blackwell Journals</source><source>Oxford Journals</source><creator>Kapelner, Adam ; Krieger, Abba</creator><creatorcontrib>Kapelner, Adam ; Krieger, Abba</creatorcontrib><description>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13561</identifier><identifier>PMID: 34535893</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Clinical trials ; covariate and response adaptive randomization ; crowdsourcing experimentation ; Matching ; sequential experiments</subject><ispartof>Biometrics, 2023-03, Vol.79 (1), p.216-229</ispartof><rights>2021 The International Biometric Society.</rights><rights>2023 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</citedby><cites>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</cites><orcidid>0000-0001-5985-6792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34535893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapelner, Adam</creatorcontrib><creatorcontrib>Krieger, Abba</creatorcontrib><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</description><subject>Clinical trials</subject><subject>covariate and response adaptive randomization</subject><subject>crowdsourcing experimentation</subject><subject>Matching</subject><subject>sequential experiments</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOj42foAE3IhQzbOPpQ6-QHGj4C6k6a2N9GXSzjh_b7SjCxdmc7lwOLkchA4pOaPhnee2a84olzHdQDMqBY2IYGQTzQghccQFfdlBu96_hTWThG2jHS4kl2nGZ6i8wI0eTGXbV9y7zkAxOsBl57CH9xHaweoaw0cPzjZh83io9IDtAE4PdgH1CtegXevxsrKmwqZbaGf1AB7bJvgWgPtuCW4fbZW69nCwnnvo-frqaX4b3T_e3M0v7iPDZUIjkNzkIiaiLJkhhaCGpUzEtCjzRGQmyXNKtMliSsGYVJOcS6EFKYrYFABJzvfQyeQNf4fz_aAa6w3UtW6hG71iMhGCxCTjAT3-g751o2vDdYolacZolqUsUKcTZVznvYNS9aGEditFifqqr77qq-_6AT5aK8e8geIX_ckdADoBS1vD6h-Vurx7fJikn5lzkXk</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kapelner, Adam</creator><creator>Krieger, Abba</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5985-6792</orcidid></search><sort><creationdate>202303</creationdate><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><author>Kapelner, Adam ; Krieger, Abba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clinical trials</topic><topic>covariate and response adaptive randomization</topic><topic>crowdsourcing experimentation</topic><topic>Matching</topic><topic>sequential experiments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapelner, Adam</creatorcontrib><creatorcontrib>Krieger, Abba</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapelner, Adam</au><au>Krieger, Abba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matching procedure for sequential experiments that iteratively learns which covariates improve power</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2023-03</date><risdate>2023</risdate><volume>79</volume><issue>1</issue><spage>216</spage><epage>229</epage><pages>216-229</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34535893</pmid><doi>10.1111/biom.13561</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5985-6792</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2023-03, Vol.79 (1), p.216-229
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_2574406093
source Wiley-Blackwell Journals; Oxford Journals
subjects Clinical trials
covariate and response adaptive randomization
crowdsourcing experimentation
Matching
sequential experiments
title A matching procedure for sequential experiments that iteratively learns which covariates improve power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matching%20procedure%20for%20sequential%20experiments%20that%20iteratively%20learns%20which%20covariates%20improve%20power&rft.jtitle=Biometrics&rft.au=Kapelner,%20Adam&rft.date=2023-03&rft.volume=79&rft.issue=1&rft.spage=216&rft.epage=229&rft.pages=216-229&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13561&rft_dat=%3Cproquest_cross%3E2789219982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789219982&rft_id=info:pmid/34535893&rfr_iscdi=true