A matching procedure for sequential experiments that iteratively learns which covariates improve power
We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously random...
Gespeichert in:
Veröffentlicht in: | Biometrics 2023-03, Vol.79 (1), p.216-229 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 229 |
---|---|
container_issue | 1 |
container_start_page | 216 |
container_title | Biometrics |
container_volume | 79 |
creator | Kapelner, Adam Krieger, Abba |
description | We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN. |
doi_str_mv | 10.1111/biom.13561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574406093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789219982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOj42foAE3IhQzbOPpQ6-QHGj4C6k6a2N9GXSzjh_b7SjCxdmc7lwOLkchA4pOaPhnee2a84olzHdQDMqBY2IYGQTzQghccQFfdlBu96_hTWThG2jHS4kl2nGZ6i8wI0eTGXbV9y7zkAxOsBl57CH9xHaweoaw0cPzjZh83io9IDtAE4PdgH1CtegXevxsrKmwqZbaGf1AB7bJvgWgPtuCW4fbZW69nCwnnvo-frqaX4b3T_e3M0v7iPDZUIjkNzkIiaiLJkhhaCGpUzEtCjzRGQmyXNKtMliSsGYVJOcS6EFKYrYFABJzvfQyeQNf4fz_aAa6w3UtW6hG71iMhGCxCTjAT3-g751o2vDdYolacZolqUsUKcTZVznvYNS9aGEditFifqqr77qq-_6AT5aK8e8geIX_ckdADoBS1vD6h-Vurx7fJikn5lzkXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789219982</pqid></control><display><type>article</type><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><source>Wiley-Blackwell Journals</source><source>Oxford Journals</source><creator>Kapelner, Adam ; Krieger, Abba</creator><creatorcontrib>Kapelner, Adam ; Krieger, Abba</creatorcontrib><description>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13561</identifier><identifier>PMID: 34535893</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Clinical trials ; covariate and response adaptive randomization ; crowdsourcing experimentation ; Matching ; sequential experiments</subject><ispartof>Biometrics, 2023-03, Vol.79 (1), p.216-229</ispartof><rights>2021 The International Biometric Society.</rights><rights>2023 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</citedby><cites>FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</cites><orcidid>0000-0001-5985-6792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34535893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapelner, Adam</creatorcontrib><creatorcontrib>Krieger, Abba</creatorcontrib><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</description><subject>Clinical trials</subject><subject>covariate and response adaptive randomization</subject><subject>crowdsourcing experimentation</subject><subject>Matching</subject><subject>sequential experiments</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOj42foAE3IhQzbOPpQ6-QHGj4C6k6a2N9GXSzjh_b7SjCxdmc7lwOLkchA4pOaPhnee2a84olzHdQDMqBY2IYGQTzQghccQFfdlBu96_hTWThG2jHS4kl2nGZ6i8wI0eTGXbV9y7zkAxOsBl57CH9xHaweoaw0cPzjZh83io9IDtAE4PdgH1CtegXevxsrKmwqZbaGf1AB7bJvgWgPtuCW4fbZW69nCwnnvo-frqaX4b3T_e3M0v7iPDZUIjkNzkIiaiLJkhhaCGpUzEtCjzRGQmyXNKtMliSsGYVJOcS6EFKYrYFABJzvfQyeQNf4fz_aAa6w3UtW6hG71iMhGCxCTjAT3-g751o2vDdYolacZolqUsUKcTZVznvYNS9aGEditFifqqr77qq-_6AT5aK8e8geIX_ckdADoBS1vD6h-Vurx7fJikn5lzkXk</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Kapelner, Adam</creator><creator>Krieger, Abba</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5985-6792</orcidid></search><sort><creationdate>202303</creationdate><title>A matching procedure for sequential experiments that iteratively learns which covariates improve power</title><author>Kapelner, Adam ; Krieger, Abba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-e53cb4604ff2c0d41c282461dfb749c7bb10ac9611ecc8a0b354a40dd6cdee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clinical trials</topic><topic>covariate and response adaptive randomization</topic><topic>crowdsourcing experimentation</topic><topic>Matching</topic><topic>sequential experiments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapelner, Adam</creatorcontrib><creatorcontrib>Krieger, Abba</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapelner, Adam</au><au>Krieger, Abba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matching procedure for sequential experiments that iteratively learns which covariates improve power</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2023-03</date><risdate>2023</risdate><volume>79</volume><issue>1</issue><spage>216</spage><epage>229</epage><pages>216-229</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>We propose a dynamic allocation procedure that increases power and efficiency when measuring an average treatment effect in sequential randomized trials exploiting some subjects' previous assessed responses. Subjects arrive sequentially and are either randomized or paired to a previously randomized subject and administered the alternate treatment. The pairing is made via a dynamic matching criterion that iteratively learns which specific covariates are important to the response. We develop estimators for the average treatment effect as well as an exact test. We illustrate our method's increase in efficiency and power over other allocation procedures in both simulated scenarios and a clinical trial dataset. An R package “SeqExpMatch” for use by practitioners is available on CRAN.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34535893</pmid><doi>10.1111/biom.13561</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5985-6792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2023-03, Vol.79 (1), p.216-229 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2574406093 |
source | Wiley-Blackwell Journals; Oxford Journals |
subjects | Clinical trials covariate and response adaptive randomization crowdsourcing experimentation Matching sequential experiments |
title | A matching procedure for sequential experiments that iteratively learns which covariates improve power |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matching%20procedure%20for%20sequential%20experiments%20that%20iteratively%20learns%20which%20covariates%20improve%20power&rft.jtitle=Biometrics&rft.au=Kapelner,%20Adam&rft.date=2023-03&rft.volume=79&rft.issue=1&rft.spage=216&rft.epage=229&rft.pages=216-229&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13561&rft_dat=%3Cproquest_cross%3E2789219982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789219982&rft_id=info:pmid/34535893&rfr_iscdi=true |