Recent developments in multiscale free energy simulations
Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible...
Gespeichert in:
Veröffentlicht in: | Current opinion in structural biology 2022-02, Vol.72, p.55-62 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | |
container_start_page | 55 |
container_title | Current opinion in structural biology |
container_volume | 72 |
creator | Barros, Emilia P. Ries, Benjamin Böselt, Lennard Champion, Candide Riniker, Sereina |
description | Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations.
•An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales. |
doi_str_mv | 10.1016/j.sbi.2021.08.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574397471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X21001251</els_id><sourcerecordid>2574397471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78AC_So5fWSZOmCZ5k8QsWBFHwFpJ0Kln6sSbdhf33Zln16GkG5pmXmYeQSwoFBSpulkW0viihpAXIAoAdkBmVtcqBsY9DMgNVqZxz-DghpzEuAUBQLo_JCeMV4zWIGVGv6HCYsgY32I2rPvUx80PWr7vJR2c6zNqAmOGA4XObRZ8GZvLjEM_JUWu6iBc_9Yy8P9y_zZ_yxcvj8_xukTumxJSXlVHWOcuVLVtpBTWVqRWXrnFW2saga1RrW9lSU5a0YlSIxoF0okUB6Aw7I9f73FUYv9YYJ92nw7DrzIDjOuqyqjlTNa9pQukedWGMMWCrV8H3Jmw1Bb0zppc6GdM7YxqkTsbSztVP_Nr22Pxt_CpKwO0ewPTkxmPQ0XkcHDY-oJt0M_p_4r8B8-J9cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574397471</pqid></control><display><type>article</type><title>Recent developments in multiscale free energy simulations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</creator><creatorcontrib>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</creatorcontrib><description>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations.
•An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2021.08.003</identifier><identifier>PMID: 34534706</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Entropy ; Machine Learning ; Thermodynamics</subject><ispartof>Current opinion in structural biology, 2022-02, Vol.72, p.55-62</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</citedby><cites>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</cites><orcidid>0000-0003-1893-4031 ; 0000-0001-6982-1569 ; 0000-0002-0945-8304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959440X21001251$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34534706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barros, Emilia P.</creatorcontrib><creatorcontrib>Ries, Benjamin</creatorcontrib><creatorcontrib>Böselt, Lennard</creatorcontrib><creatorcontrib>Champion, Candide</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><title>Recent developments in multiscale free energy simulations</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations.
•An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</description><subject>Entropy</subject><subject>Machine Learning</subject><subject>Thermodynamics</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun78AC_So5fWSZOmCZ5k8QsWBFHwFpJ0Kln6sSbdhf33Zln16GkG5pmXmYeQSwoFBSpulkW0viihpAXIAoAdkBmVtcqBsY9DMgNVqZxz-DghpzEuAUBQLo_JCeMV4zWIGVGv6HCYsgY32I2rPvUx80PWr7vJR2c6zNqAmOGA4XObRZ8GZvLjEM_JUWu6iBc_9Yy8P9y_zZ_yxcvj8_xukTumxJSXlVHWOcuVLVtpBTWVqRWXrnFW2saga1RrW9lSU5a0YlSIxoF0okUB6Aw7I9f73FUYv9YYJ92nw7DrzIDjOuqyqjlTNa9pQukedWGMMWCrV8H3Jmw1Bb0zppc6GdM7YxqkTsbSztVP_Nr22Pxt_CpKwO0ewPTkxmPQ0XkcHDY-oJt0M_p_4r8B8-J9cw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Barros, Emilia P.</creator><creator>Ries, Benjamin</creator><creator>Böselt, Lennard</creator><creator>Champion, Candide</creator><creator>Riniker, Sereina</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0000-0001-6982-1569</orcidid><orcidid>https://orcid.org/0000-0002-0945-8304</orcidid></search><sort><creationdate>202202</creationdate><title>Recent developments in multiscale free energy simulations</title><author>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Entropy</topic><topic>Machine Learning</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Emilia P.</creatorcontrib><creatorcontrib>Ries, Benjamin</creatorcontrib><creatorcontrib>Böselt, Lennard</creatorcontrib><creatorcontrib>Champion, Candide</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Emilia P.</au><au>Ries, Benjamin</au><au>Böselt, Lennard</au><au>Champion, Candide</au><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in multiscale free energy simulations</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>72</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations.
•An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34534706</pmid><doi>10.1016/j.sbi.2021.08.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0000-0001-6982-1569</orcidid><orcidid>https://orcid.org/0000-0002-0945-8304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-440X |
ispartof | Current opinion in structural biology, 2022-02, Vol.72, p.55-62 |
issn | 0959-440X 1879-033X |
language | eng |
recordid | cdi_proquest_miscellaneous_2574397471 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Entropy Machine Learning Thermodynamics |
title | Recent developments in multiscale free energy simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20multiscale%20free%20energy%20simulations&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Barros,%20Emilia%20P.&rft.date=2022-02&rft.volume=72&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2021.08.003&rft_dat=%3Cproquest_cross%3E2574397471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574397471&rft_id=info:pmid/34534706&rft_els_id=S0959440X21001251&rfr_iscdi=true |