Recent developments in multiscale free energy simulations

Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in structural biology 2022-02, Vol.72, p.55-62
Hauptverfasser: Barros, Emilia P., Ries, Benjamin, Böselt, Lennard, Champion, Candide, Riniker, Sereina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue
container_start_page 55
container_title Current opinion in structural biology
container_volume 72
creator Barros, Emilia P.
Ries, Benjamin
Böselt, Lennard
Champion, Candide
Riniker, Sereina
description Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations. •An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.
doi_str_mv 10.1016/j.sbi.2021.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574397471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0959440X21001251</els_id><sourcerecordid>2574397471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoun78AC_So5fWSZOmCZ5k8QsWBFHwFpJ0Kln6sSbdhf33Zln16GkG5pmXmYeQSwoFBSpulkW0viihpAXIAoAdkBmVtcqBsY9DMgNVqZxz-DghpzEuAUBQLo_JCeMV4zWIGVGv6HCYsgY32I2rPvUx80PWr7vJR2c6zNqAmOGA4XObRZ8GZvLjEM_JUWu6iBc_9Yy8P9y_zZ_yxcvj8_xukTumxJSXlVHWOcuVLVtpBTWVqRWXrnFW2saga1RrW9lSU5a0YlSIxoF0okUB6Aw7I9f73FUYv9YYJ92nw7DrzIDjOuqyqjlTNa9pQukedWGMMWCrV8H3Jmw1Bb0zppc6GdM7YxqkTsbSztVP_Nr22Pxt_CpKwO0ewPTkxmPQ0XkcHDY-oJt0M_p_4r8B8-J9cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574397471</pqid></control><display><type>article</type><title>Recent developments in multiscale free energy simulations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</creator><creatorcontrib>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</creatorcontrib><description>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations. •An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</description><identifier>ISSN: 0959-440X</identifier><identifier>EISSN: 1879-033X</identifier><identifier>DOI: 10.1016/j.sbi.2021.08.003</identifier><identifier>PMID: 34534706</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Entropy ; Machine Learning ; Thermodynamics</subject><ispartof>Current opinion in structural biology, 2022-02, Vol.72, p.55-62</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</citedby><cites>FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</cites><orcidid>0000-0003-1893-4031 ; 0000-0001-6982-1569 ; 0000-0002-0945-8304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959440X21001251$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34534706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barros, Emilia P.</creatorcontrib><creatorcontrib>Ries, Benjamin</creatorcontrib><creatorcontrib>Böselt, Lennard</creatorcontrib><creatorcontrib>Champion, Candide</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><title>Recent developments in multiscale free energy simulations</title><title>Current opinion in structural biology</title><addtitle>Curr Opin Struct Biol</addtitle><description>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations. •An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</description><subject>Entropy</subject><subject>Machine Learning</subject><subject>Thermodynamics</subject><issn>0959-440X</issn><issn>1879-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMoun78AC_So5fWSZOmCZ5k8QsWBFHwFpJ0Kln6sSbdhf33Zln16GkG5pmXmYeQSwoFBSpulkW0viihpAXIAoAdkBmVtcqBsY9DMgNVqZxz-DghpzEuAUBQLo_JCeMV4zWIGVGv6HCYsgY32I2rPvUx80PWr7vJR2c6zNqAmOGA4XObRZ8GZvLjEM_JUWu6iBc_9Yy8P9y_zZ_yxcvj8_xukTumxJSXlVHWOcuVLVtpBTWVqRWXrnFW2saga1RrW9lSU5a0YlSIxoF0okUB6Aw7I9f73FUYv9YYJ92nw7DrzIDjOuqyqjlTNa9pQukedWGMMWCrV8H3Jmw1Bb0zppc6GdM7YxqkTsbSztVP_Nr22Pxt_CpKwO0ewPTkxmPQ0XkcHDY-oJt0M_p_4r8B8-J9cw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Barros, Emilia P.</creator><creator>Ries, Benjamin</creator><creator>Böselt, Lennard</creator><creator>Champion, Candide</creator><creator>Riniker, Sereina</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0000-0001-6982-1569</orcidid><orcidid>https://orcid.org/0000-0002-0945-8304</orcidid></search><sort><creationdate>202202</creationdate><title>Recent developments in multiscale free energy simulations</title><author>Barros, Emilia P. ; Ries, Benjamin ; Böselt, Lennard ; Champion, Candide ; Riniker, Sereina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-25a9bccb49b2f8b61a5a7948cdcb8bdaecd9fbf8f1a22153166dc08c6fe60eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Entropy</topic><topic>Machine Learning</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barros, Emilia P.</creatorcontrib><creatorcontrib>Ries, Benjamin</creatorcontrib><creatorcontrib>Böselt, Lennard</creatorcontrib><creatorcontrib>Champion, Candide</creatorcontrib><creatorcontrib>Riniker, Sereina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barros, Emilia P.</au><au>Ries, Benjamin</au><au>Böselt, Lennard</au><au>Champion, Candide</au><au>Riniker, Sereina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments in multiscale free energy simulations</atitle><jtitle>Current opinion in structural biology</jtitle><addtitle>Curr Opin Struct Biol</addtitle><date>2022-02</date><risdate>2022</risdate><volume>72</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>0959-440X</issn><eissn>1879-033X</eissn><abstract>Physics-based free energy simulations enable the rigorous calculation of properties, such as conformational equilibria, solvation or binding free energies. While historically most applications have occurred at the atomistic level of resolution, a range of advances in the past years make it possible now to reliably cross the temporal, spatial and theory scales for the modeling of complex systems or the efficient prediction of results at the accuracy level of expensive quantum-mechanical calculations. In this mini-review, we discuss recent methodological advances as well as opportunities opened up by the introduction of machine learning approaches, which tackle the diverse challenges across the different scales, improve the accuracy and feasibility, and push the boundaries of multiscale free energy simulations. •An array of rigorous simulation methods are available for calculating free energies.•Recent advances enable the crossing of temporal, spatial and theory scales.•Quantum mechanical/molecular mechanical methods and machine learning techniques can efficiently model the quantum mechanical potential energy surface.•Coarse-grained methods allow sampling of processes at larger time and spatial scales.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>34534706</pmid><doi>10.1016/j.sbi.2021.08.003</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1893-4031</orcidid><orcidid>https://orcid.org/0000-0001-6982-1569</orcidid><orcidid>https://orcid.org/0000-0002-0945-8304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-440X
ispartof Current opinion in structural biology, 2022-02, Vol.72, p.55-62
issn 0959-440X
1879-033X
language eng
recordid cdi_proquest_miscellaneous_2574397471
source MEDLINE; Elsevier ScienceDirect Journals
subjects Entropy
Machine Learning
Thermodynamics
title Recent developments in multiscale free energy simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20in%20multiscale%20free%20energy%20simulations&rft.jtitle=Current%20opinion%20in%20structural%20biology&rft.au=Barros,%20Emilia%20P.&rft.date=2022-02&rft.volume=72&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=0959-440X&rft.eissn=1879-033X&rft_id=info:doi/10.1016/j.sbi.2021.08.003&rft_dat=%3Cproquest_cross%3E2574397471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574397471&rft_id=info:pmid/34534706&rft_els_id=S0959440X21001251&rfr_iscdi=true