pH-Sensitive Polymeric Vesicles for GOx/BSO Delivery and Synergetic Starvation-Ferroptosis Therapy of Tumor
Typical glucose oxidase (GOx)-based starvation therapy is a promising strategy for tumor treatment; however, it is still difficult to achieve an effective therapeutic effect via a single starvation therapy. Herein, we designed a pH-sensitive polymeric vesicle (PV) self-assembled by histamine-modifie...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2021-10, Vol.22 (10), p.4383-4394 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Typical glucose oxidase (GOx)-based starvation therapy is a promising strategy for tumor treatment; however, it is still difficult to achieve an effective therapeutic effect via a single starvation therapy. Herein, we designed a pH-sensitive polymeric vesicle (PV) self-assembled by histamine-modified chondroitin sulfate (CS-his) for codelivery of GOx and l-buthionine sulfoximine (BSO). GOx can consume glucose to induce the starvation therapy after the PVs reach cancer cell. Moreover, the product H2O2 will be reduced by a high concentration of glutathione (GSH) in the tumor cell, resulting in a reduction of the GSH content. The released BSO finally further reduced the GSH level. As a result, the signaling pathway of the ferroptosis will be activated. The in vivo results demonstrated that GOx/BSO@CS PVs exhibit a good inhibitory effect on the growth of 4T1 tumors in mice. Thus, this work provides a facile strategy to prepare pH-sensitive nanomedicine for synergistic starvation-ferroptosis therapy of tumor. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/acs.biomac.1c00960 |