Dynamical Phase Transitions in Quantum Reservoir Computing

Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-09, Vol.127 (10), p.100502-100502, Article 100502
Hauptverfasser: Martínez-Peña, Rodrigo, Giorgi, Gian Luca, Nokkala, Johannes, Soriano, Miguel C., Zambrini, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100502
container_issue 10
container_start_page 100502
container_title Physical review letters
container_volume 127
creator Martínez-Peña, Rodrigo
Giorgi, Gian Luca
Nokkala, Johannes
Soriano, Miguel C.
Zambrini, Roberta
description Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.
doi_str_mv 10.1103/PhysRevLett.127.100502
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574389590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574389590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-7332bcd539727dd60f80f4a180de042ce1378ab6cf470bf956e966c25c2c42e23</originalsourceid><addsrcrecordid>eNpd0E9LwzAYx_EgCs7pW5CCFy-dz5M0TetN5l8oOMc8hyxNXUabzKQd7N27MQ_i6bl8ePjxJeQaYYII7G622sW52Vam7ydIxQQBONATMkIQZSoQs1MyAmCYlgDinFzEuAYApHkxIvePO6c6q1WbzFYqmmQRlIu2t97FxLrkY1CuH7pkbqIJW29DMvXdZuit-7okZ41qo7n6vWPy-fy0mL6m1fvL2_ShSnWGok8FY3Spa85KQUVd59AU0GQKC6gNZFQbZKJQy1w3mYBlU_LclHmuKddUZ9RQNia3x7-b4L8HE3vZ2ahN2ypn_BAl5SJjRclL2NObf3Tth-D26w6KcWRQHFR-VDr4GINp5CbYToWdRJCHpPJPUrlPKo9J2Q9QoWvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573513080</pqid></control><display><type>article</type><title>Dynamical Phase Transitions in Quantum Reservoir Computing</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Martínez-Peña, Rodrigo ; Giorgi, Gian Luca ; Nokkala, Johannes ; Soriano, Miguel C. ; Zambrini, Roberta</creator><creatorcontrib>Martínez-Peña, Rodrigo ; Giorgi, Gian Luca ; Nokkala, Johannes ; Soriano, Miguel C. ; Zambrini, Roberta</creatorcontrib><description>Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.100502</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Computation ; Data processing ; Many body interactions ; Phase transitions ; Thermalization (energy absorption)</subject><ispartof>Physical review letters, 2021-09, Vol.127 (10), p.100502-100502, Article 100502</ispartof><rights>Copyright American Physical Society Sep 3, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-7332bcd539727dd60f80f4a180de042ce1378ab6cf470bf956e966c25c2c42e23</citedby><cites>FETCH-LOGICAL-c417t-7332bcd539727dd60f80f4a180de042ce1378ab6cf470bf956e966c25c2c42e23</cites><orcidid>0000-0002-5052-9813 ; 0000-0002-1459-7464 ; 0000-0003-3113-0193 ; 0000-0002-6140-8451 ; 0000-0002-9896-3563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Martínez-Peña, Rodrigo</creatorcontrib><creatorcontrib>Giorgi, Gian Luca</creatorcontrib><creatorcontrib>Nokkala, Johannes</creatorcontrib><creatorcontrib>Soriano, Miguel C.</creatorcontrib><creatorcontrib>Zambrini, Roberta</creatorcontrib><title>Dynamical Phase Transitions in Quantum Reservoir Computing</title><title>Physical review letters</title><description>Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.</description><subject>Computation</subject><subject>Data processing</subject><subject>Many body interactions</subject><subject>Phase transitions</subject><subject>Thermalization (energy absorption)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0E9LwzAYx_EgCs7pW5CCFy-dz5M0TetN5l8oOMc8hyxNXUabzKQd7N27MQ_i6bl8ePjxJeQaYYII7G622sW52Vam7ydIxQQBONATMkIQZSoQs1MyAmCYlgDinFzEuAYApHkxIvePO6c6q1WbzFYqmmQRlIu2t97FxLrkY1CuH7pkbqIJW29DMvXdZuit-7okZ41qo7n6vWPy-fy0mL6m1fvL2_ShSnWGok8FY3Spa85KQUVd59AU0GQKC6gNZFQbZKJQy1w3mYBlU_LclHmuKddUZ9RQNia3x7-b4L8HE3vZ2ahN2ypn_BAl5SJjRclL2NObf3Tth-D26w6KcWRQHFR-VDr4GINp5CbYToWdRJCHpPJPUrlPKo9J2Q9QoWvf</recordid><startdate>20210903</startdate><enddate>20210903</enddate><creator>Martínez-Peña, Rodrigo</creator><creator>Giorgi, Gian Luca</creator><creator>Nokkala, Johannes</creator><creator>Soriano, Miguel C.</creator><creator>Zambrini, Roberta</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5052-9813</orcidid><orcidid>https://orcid.org/0000-0002-1459-7464</orcidid><orcidid>https://orcid.org/0000-0003-3113-0193</orcidid><orcidid>https://orcid.org/0000-0002-6140-8451</orcidid><orcidid>https://orcid.org/0000-0002-9896-3563</orcidid></search><sort><creationdate>20210903</creationdate><title>Dynamical Phase Transitions in Quantum Reservoir Computing</title><author>Martínez-Peña, Rodrigo ; Giorgi, Gian Luca ; Nokkala, Johannes ; Soriano, Miguel C. ; Zambrini, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-7332bcd539727dd60f80f4a180de042ce1378ab6cf470bf956e966c25c2c42e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computation</topic><topic>Data processing</topic><topic>Many body interactions</topic><topic>Phase transitions</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Peña, Rodrigo</creatorcontrib><creatorcontrib>Giorgi, Gian Luca</creatorcontrib><creatorcontrib>Nokkala, Johannes</creatorcontrib><creatorcontrib>Soriano, Miguel C.</creatorcontrib><creatorcontrib>Zambrini, Roberta</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Peña, Rodrigo</au><au>Giorgi, Gian Luca</au><au>Nokkala, Johannes</au><au>Soriano, Miguel C.</au><au>Zambrini, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical Phase Transitions in Quantum Reservoir Computing</atitle><jtitle>Physical review letters</jtitle><date>2021-09-03</date><risdate>2021</risdate><volume>127</volume><issue>10</issue><spage>100502</spage><epage>100502</epage><pages>100502-100502</pages><artnum>100502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Closed quantum systems exhibit different dynamical regimes, like many-body localization or thermalization, which determine the mechanisms of spread and processing of information. Here we address the impact of these dynamical phases in quantum reservoir computing, an unconventional computing paradigm recently extended into the quantum regime that exploits dynamical systems to solve nonlinear and temporal tasks. We establish that the thermal phase is naturally adapted to the requirements of quantum reservoir computing and report an increased performance at the thermalization transition for the studied tasks. Uncovering the underlying physical mechanisms behind optimal information processing capabilities of spin networks is essential for future experimental implementations and provides a new perspective on dynamical phases.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.100502</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5052-9813</orcidid><orcidid>https://orcid.org/0000-0002-1459-7464</orcidid><orcidid>https://orcid.org/0000-0003-3113-0193</orcidid><orcidid>https://orcid.org/0000-0002-6140-8451</orcidid><orcidid>https://orcid.org/0000-0002-9896-3563</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-09, Vol.127 (10), p.100502-100502, Article 100502
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2574389590
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computation
Data processing
Many body interactions
Phase transitions
Thermalization (energy absorption)
title Dynamical Phase Transitions in Quantum Reservoir Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20Phase%20Transitions%20in%20Quantum%20Reservoir%20Computing&rft.jtitle=Physical%20review%20letters&rft.au=Mart%C3%ADnez-Pe%C3%B1a,%20Rodrigo&rft.date=2021-09-03&rft.volume=127&rft.issue=10&rft.spage=100502&rft.epage=100502&rft.pages=100502-100502&rft.artnum=100502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.100502&rft_dat=%3Cproquest_cross%3E2574389590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573513080&rft_id=info:pmid/&rfr_iscdi=true