Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst
Finding a facile and practical method to produce black TiO 2 remains a challenge. Bismuth-vanadium co-doped black TiO 2 (BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (S...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-02, Vol.28 (8), p.9417-9429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9429 |
---|---|
container_issue | 8 |
container_start_page | 9417 |
container_title | Environmental science and pollution research international |
container_volume | 28 |
creator | Akbarzadeh, Rokhsareh Farhadian, Negin Asadi, Anvar Hasani, Tahereh Salehi Morovat, Setaya |
description | Finding a facile and practical method to produce black TiO
2
remains a challenge. Bismuth-vanadium co-doped black TiO
2
(BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO
2
nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO
2
contained mixed phases of brookite, anatase, and rutile of TiO
2
. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h
+
) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO
2
nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO
2
which has absorption in the visible and infrared region can open up new applications. |
doi_str_mv | 10.1007/s11356-020-11330-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574354977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574354977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-f4a7179a006ad780904fb9106a2999015d153362baf5a9b3537b5342b4894a4a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPASz1E8zFpmqMUtQWhl6rHkN1m29Ttpibblv57UysIHjzNDDzvy_AgdM3oHaNU3SfGhOwTyinJm6Bkd4I6rM-AKND6FHWoBiBMAJyji5SWNJOaqw56H_n5ot5jV1W-9K5p8dYnX9SOzKLfugZHN9uUrQ8NDhUext7b-BYXe2xxE7auxkVtyw889ROO14vQhtK2tt6n9hKdVbZO7upndtHr0-N0OCIvk-fx8OGFlDAYtKQCq5jSltK-nakB1RSqQrN8ca01ZXLGpBB9XthKWl0IKVQhBfACBhosWNFFvWPvOobPjUutWflUurq2jQubZLhUICRopTJ68wddhk1s8neGH-qAUZCZ4keqjCGl6Cqzjn5l494wag6uzdG1yQbNt2uzyyFxDKUMN3MXf6v_SX0BGMZ_xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489441045</pqid></control><display><type>article</type><title>Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst</title><source>Springer Nature - Complete Springer Journals</source><creator>Akbarzadeh, Rokhsareh ; Farhadian, Negin ; Asadi, Anvar ; Hasani, Tahereh ; Salehi Morovat, Setaya</creator><creatorcontrib>Akbarzadeh, Rokhsareh ; Farhadian, Negin ; Asadi, Anvar ; Hasani, Tahereh ; Salehi Morovat, Setaya</creatorcontrib><description>Finding a facile and practical method to produce black TiO
2
remains a challenge. Bismuth-vanadium co-doped black TiO
2
(BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO
2
nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO
2
contained mixed phases of brookite, anatase, and rutile of TiO
2
. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h
+
) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO
2
nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO
2
which has absorption in the visible and infrared region can open up new applications.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-11330-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorption ; Acetic acid ; Anatase ; Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bismuth ; Brookite ; Catalysts ; Catalytic activity ; Chromium ; Earth and Environmental Science ; Ecotoxicology ; Edetic acid ; EDTA (chelating agent) ; Electromagnetic absorption ; Electron microscopes ; Electron microscopy ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Ethylenediaminetetraacetic acids ; Hexavalent chromium ; hot water treatment ; Irradiation ; light ; Light irradiation ; Microscopy ; Nanocomposites ; Nanoparticles ; Photocatalysis ; Photocatalysts ; pollution ; Raman spectroscopy ; Reduction ; reflectance spectroscopy ; Research Article ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; Synthesis ; Titanium dioxide ; Transmission electron microscopy ; Ultraviolet radiation ; Vanadium ; Waste Water Technology ; Water Management ; Water Pollution Control ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Environmental science and pollution research international, 2021-02, Vol.28 (8), p.9417-9429</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-f4a7179a006ad780904fb9106a2999015d153362baf5a9b3537b5342b4894a4a3</citedby><cites>FETCH-LOGICAL-c488t-f4a7179a006ad780904fb9106a2999015d153362baf5a9b3537b5342b4894a4a3</cites><orcidid>0000-0002-5714-0878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-11330-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-11330-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akbarzadeh, Rokhsareh</creatorcontrib><creatorcontrib>Farhadian, Negin</creatorcontrib><creatorcontrib>Asadi, Anvar</creatorcontrib><creatorcontrib>Hasani, Tahereh</creatorcontrib><creatorcontrib>Salehi Morovat, Setaya</creatorcontrib><title>Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><description>Finding a facile and practical method to produce black TiO
2
remains a challenge. Bismuth-vanadium co-doped black TiO
2
(BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO
2
nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO
2
contained mixed phases of brookite, anatase, and rutile of TiO
2
. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h
+
) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO
2
nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO
2
which has absorption in the visible and infrared region can open up new applications.</description><subject>Absorption</subject><subject>Acetic acid</subject><subject>Anatase</subject><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bismuth</subject><subject>Brookite</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chromium</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Edetic acid</subject><subject>EDTA (chelating agent)</subject><subject>Electromagnetic absorption</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Hexavalent chromium</subject><subject>hot water treatment</subject><subject>Irradiation</subject><subject>light</subject><subject>Light irradiation</subject><subject>Microscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>pollution</subject><subject>Raman spectroscopy</subject><subject>Reduction</subject><subject>reflectance spectroscopy</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Synthesis</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><subject>Ultraviolet radiation</subject><subject>Vanadium</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPASz1E8zFpmqMUtQWhl6rHkN1m29Ttpibblv57UysIHjzNDDzvy_AgdM3oHaNU3SfGhOwTyinJm6Bkd4I6rM-AKND6FHWoBiBMAJyji5SWNJOaqw56H_n5ot5jV1W-9K5p8dYnX9SOzKLfugZHN9uUrQ8NDhUext7b-BYXe2xxE7auxkVtyw889ROO14vQhtK2tt6n9hKdVbZO7upndtHr0-N0OCIvk-fx8OGFlDAYtKQCq5jSltK-nakB1RSqQrN8ca01ZXLGpBB9XthKWl0IKVQhBfACBhosWNFFvWPvOobPjUutWflUurq2jQubZLhUICRopTJ68wddhk1s8neGH-qAUZCZ4keqjCGl6Cqzjn5l494wag6uzdG1yQbNt2uzyyFxDKUMN3MXf6v_SX0BGMZ_xA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Akbarzadeh, Rokhsareh</creator><creator>Farhadian, Negin</creator><creator>Asadi, Anvar</creator><creator>Hasani, Tahereh</creator><creator>Salehi Morovat, Setaya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5714-0878</orcidid></search><sort><creationdate>20210201</creationdate><title>Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst</title><author>Akbarzadeh, Rokhsareh ; Farhadian, Negin ; Asadi, Anvar ; Hasani, Tahereh ; Salehi Morovat, Setaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-f4a7179a006ad780904fb9106a2999015d153362baf5a9b3537b5342b4894a4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Acetic acid</topic><topic>Anatase</topic><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bismuth</topic><topic>Brookite</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chromium</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Edetic acid</topic><topic>EDTA (chelating agent)</topic><topic>Electromagnetic absorption</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Hexavalent chromium</topic><topic>hot water treatment</topic><topic>Irradiation</topic><topic>light</topic><topic>Light irradiation</topic><topic>Microscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>pollution</topic><topic>Raman spectroscopy</topic><topic>Reduction</topic><topic>reflectance spectroscopy</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Synthesis</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><topic>Ultraviolet radiation</topic><topic>Vanadium</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarzadeh, Rokhsareh</creatorcontrib><creatorcontrib>Farhadian, Negin</creatorcontrib><creatorcontrib>Asadi, Anvar</creatorcontrib><creatorcontrib>Hasani, Tahereh</creatorcontrib><creatorcontrib>Salehi Morovat, Setaya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbarzadeh, Rokhsareh</au><au>Farhadian, Negin</au><au>Asadi, Anvar</au><au>Hasani, Tahereh</au><au>Salehi Morovat, Setaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>28</volume><issue>8</issue><spage>9417</spage><epage>9429</epage><pages>9417-9429</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Finding a facile and practical method to produce black TiO
2
remains a challenge. Bismuth-vanadium co-doped black TiO
2
(BVBT) was synthesized as a visible light driven photocatalyst by a simple one-pot hydrothermal method. The synthesized BVBT was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-Vis DRS). The light absorption of the synthesized Bi-V co-coped black TiO
2
nanoparticles was significantly improved in the visible and infrared regions. The XRD patterns indicated that the black TiO
2
contained mixed phases of brookite, anatase, and rutile of TiO
2
. This was further confirmed by Raman spectroscopy. The photocatalytic activity of the sample was evaluated by reduction of hexavalent chromium (Cr(VI)) under visible light irradiation. Among investigated hole (h
+
) scavengers, ethylenediaminetetraacetic acid (EDTA) led to the highest reduction of Cr(VI) with a molar ratio of 1:5 (EDTA:Cr(VI)). The results indicated that the Bi-V co-coped black TiO
2
nanocomposite can reduce 94% of 1 mg/L of Cr(VI) within 20 min irradiation time (pH 3 and catalyst dose of 1 g/L). Introducing a simple method to synthesize black TiO
2
which has absorption in the visible and infrared region can open up new applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11356-020-11330-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5714-0878</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-1344 |
ispartof | Environmental science and pollution research international, 2021-02, Vol.28 (8), p.9417-9429 |
issn | 0944-1344 1614-7499 |
language | eng |
recordid | cdi_proquest_miscellaneous_2574354977 |
source | Springer Nature - Complete Springer Journals |
subjects | Absorption Acetic acid Anatase Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Bismuth Brookite Catalysts Catalytic activity Chromium Earth and Environmental Science Ecotoxicology Edetic acid EDTA (chelating agent) Electromagnetic absorption Electron microscopes Electron microscopy Environment Environmental Chemistry Environmental Health Environmental science Ethylenediaminetetraacetic acids Hexavalent chromium hot water treatment Irradiation light Light irradiation Microscopy Nanocomposites Nanoparticles Photocatalysis Photocatalysts pollution Raman spectroscopy Reduction reflectance spectroscopy Research Article Scanning electron microscopy Spectroscopy Spectrum analysis Synthesis Titanium dioxide Transmission electron microscopy Ultraviolet radiation Vanadium Waste Water Technology Water Management Water Pollution Control X ray powder diffraction X-ray diffraction |
title | Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20efficient%20visible-driven%20reduction%20of%20Cr(VI)%20by%20a%20novel%20black%20TiO2%20photocatalyst&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Akbarzadeh,%20Rokhsareh&rft.date=2021-02-01&rft.volume=28&rft.issue=8&rft.spage=9417&rft.epage=9429&rft.pages=9417-9429&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-11330-w&rft_dat=%3Cproquest_cross%3E2574354977%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489441045&rft_id=info:pmid/&rfr_iscdi=true |