Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis

Domestic trade plays a key role in China’s rapid economic progress. However, the increased domestic trade causes significant variations in carbon emission transfer among provinces. This study adopted the multi-region input-output (MRIO) model and social network analysis (SNA) to estimate the carbon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-06, Vol.27 (18), p.23281-23300
Hauptverfasser: Sun, Licheng, Qin, Lin, Taghizadeh-Hesary, Farhad, Zhang, Jijian, Mohsin, Muhammad, Chaudhry, Imran Sharif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23300
container_issue 18
container_start_page 23281
container_title Environmental science and pollution research international
container_volume 27
creator Sun, Licheng
Qin, Lin
Taghizadeh-Hesary, Farhad
Zhang, Jijian
Mohsin, Muhammad
Chaudhry, Imran Sharif
description Domestic trade plays a key role in China’s rapid economic progress. However, the increased domestic trade causes significant variations in carbon emission transfer among provinces. This study adopted the multi-region input-output (MRIO) model and social network analysis (SNA) to estimate the carbon emission transfer. Furthermore, the carbon emission transfer network characteristics among 30 provinces and 27 sectors were analyzed by using interprovincial input-output tables for 2007, 2010, and 2012. The results showed that (1) Large differences exist in carbon emission transfer flow and its network characteristics between provinces. (2) The three industrial sectors of metal smelting and pressing sector, power, heat production, and supply sector, petroleum processing, coking, and nuclear fuel processing sector have high carbon emission transfer and pose a strong influence on the carbon emission transfer network. (3) Provinces of the eastern region have a “bidirectional spillover” role, while those of the western region have a mediating role as an “agent.” Provinces of the central region have a “main inflow” role. Finally, useful policy implications and suggestions of this study are summarized.
doi_str_mv 10.1007/s11356-020-08911-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2574334772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574334772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-21283cf3784f1550615f37388c77458d1002bd0bd08a4f1e8433293c2f9c6e553</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMo9tr6B1xIwE03o_mcJO7KxapQcNOuQ25upqbOJDVnprX-es_trRVcKATy9bzvyclLyCvO3nLGzDvgXOq-Y4J1zDrOO_aErHjPVWeUc0_JijmlOi6VOiAvAK4Ykk6Y5-RACilN37sV-XFSwnj3M5dLGkPb1ELTlAEyLuYWCgyp0ZLm29q-UZjbEuelJRqmioLrVm9yiQloLnT9NZfwHtlbmm7yNuE5HVqdKNSYw_hoEnb1IMMReTaEEdLLh_mQXJx-OF9_6s6-fPy8PjnrohZm7gQXVsZBGqsGrjXrucaNtDYao7Td4keIzZbhsAGJZJWUwskoBhf7pLU8JMd7X3zt9yXB7LG_mMYxlFQX8EIblChjxP9R6bTQvdA79M1f6FVdGraGlOKi11a4XW2xp2KrAC0N_rrlKbQ7z5nfRej3EXoMxt9H6BmKXj9YL5spbR8lvzNDQO4BwKtymdqf2v-w_QXzVqaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2412658295</pqid></control><display><type>article</type><title>Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Licheng ; Qin, Lin ; Taghizadeh-Hesary, Farhad ; Zhang, Jijian ; Mohsin, Muhammad ; Chaudhry, Imran Sharif</creator><creatorcontrib>Sun, Licheng ; Qin, Lin ; Taghizadeh-Hesary, Farhad ; Zhang, Jijian ; Mohsin, Muhammad ; Chaudhry, Imran Sharif</creatorcontrib><description>Domestic trade plays a key role in China’s rapid economic progress. However, the increased domestic trade causes significant variations in carbon emission transfer among provinces. This study adopted the multi-region input-output (MRIO) model and social network analysis (SNA) to estimate the carbon emission transfer. Furthermore, the carbon emission transfer network characteristics among 30 provinces and 27 sectors were analyzed by using interprovincial input-output tables for 2007, 2010, and 2012. The results showed that (1) Large differences exist in carbon emission transfer flow and its network characteristics between provinces. (2) The three industrial sectors of metal smelting and pressing sector, power, heat production, and supply sector, petroleum processing, coking, and nuclear fuel processing sector have high carbon emission transfer and pose a strong influence on the carbon emission transfer network. (3) Provinces of the eastern region have a “bidirectional spillover” role, while those of the western region have a mediating role as an “agent.” Provinces of the central region have a “main inflow” role. Finally, useful policy implications and suggestions of this study are summarized.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-020-08911-0</identifier><identifier>PMID: 32337669</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Atmospheric Protection/Air Quality Control/Air Pollution ; Carbon ; China ; Coking ; domestic trade ; Earth and Environmental Science ; Ecotoxicology ; Emission analysis ; Emissions ; Energy management ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; heat production ; issues and policy ; Network analysis ; Nuclear fuels ; petroleum ; Research Article ; Smelting ; Social network analysis ; Social networks ; Social organization ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Environmental science and pollution research international, 2020-06, Vol.27 (18), p.23281-23300</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-21283cf3784f1550615f37388c77458d1002bd0bd08a4f1e8433293c2f9c6e553</citedby><cites>FETCH-LOGICAL-c527t-21283cf3784f1550615f37388c77458d1002bd0bd08a4f1e8433293c2f9c6e553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-020-08911-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-020-08911-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32337669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Licheng</creatorcontrib><creatorcontrib>Qin, Lin</creatorcontrib><creatorcontrib>Taghizadeh-Hesary, Farhad</creatorcontrib><creatorcontrib>Zhang, Jijian</creatorcontrib><creatorcontrib>Mohsin, Muhammad</creatorcontrib><creatorcontrib>Chaudhry, Imran Sharif</creatorcontrib><title>Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>Domestic trade plays a key role in China’s rapid economic progress. However, the increased domestic trade causes significant variations in carbon emission transfer among provinces. This study adopted the multi-region input-output (MRIO) model and social network analysis (SNA) to estimate the carbon emission transfer. Furthermore, the carbon emission transfer network characteristics among 30 provinces and 27 sectors were analyzed by using interprovincial input-output tables for 2007, 2010, and 2012. The results showed that (1) Large differences exist in carbon emission transfer flow and its network characteristics between provinces. (2) The three industrial sectors of metal smelting and pressing sector, power, heat production, and supply sector, petroleum processing, coking, and nuclear fuel processing sector have high carbon emission transfer and pose a strong influence on the carbon emission transfer network. (3) Provinces of the eastern region have a “bidirectional spillover” role, while those of the western region have a mediating role as an “agent.” Provinces of the central region have a “main inflow” role. Finally, useful policy implications and suggestions of this study are summarized.</description><subject>Aquatic Pollution</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Carbon</subject><subject>China</subject><subject>Coking</subject><subject>domestic trade</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emission analysis</subject><subject>Emissions</subject><subject>Energy management</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>heat production</subject><subject>issues and policy</subject><subject>Network analysis</subject><subject>Nuclear fuels</subject><subject>petroleum</subject><subject>Research Article</subject><subject>Smelting</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU1rFTEUhoMo9tr6B1xIwE03o_mcJO7KxapQcNOuQ25upqbOJDVnprX-es_trRVcKATy9bzvyclLyCvO3nLGzDvgXOq-Y4J1zDrOO_aErHjPVWeUc0_JijmlOi6VOiAvAK4Ykk6Y5-RACilN37sV-XFSwnj3M5dLGkPb1ELTlAEyLuYWCgyp0ZLm29q-UZjbEuelJRqmioLrVm9yiQloLnT9NZfwHtlbmm7yNuE5HVqdKNSYw_hoEnb1IMMReTaEEdLLh_mQXJx-OF9_6s6-fPy8PjnrohZm7gQXVsZBGqsGrjXrucaNtDYao7Td4keIzZbhsAGJZJWUwskoBhf7pLU8JMd7X3zt9yXB7LG_mMYxlFQX8EIblChjxP9R6bTQvdA79M1f6FVdGraGlOKi11a4XW2xp2KrAC0N_rrlKbQ7z5nfRej3EXoMxt9H6BmKXj9YL5spbR8lvzNDQO4BwKtymdqf2v-w_QXzVqaY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sun, Licheng</creator><creator>Qin, Lin</creator><creator>Taghizadeh-Hesary, Farhad</creator><creator>Zhang, Jijian</creator><creator>Mohsin, Muhammad</creator><creator>Chaudhry, Imran Sharif</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20200601</creationdate><title>Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis</title><author>Sun, Licheng ; Qin, Lin ; Taghizadeh-Hesary, Farhad ; Zhang, Jijian ; Mohsin, Muhammad ; Chaudhry, Imran Sharif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-21283cf3784f1550615f37388c77458d1002bd0bd08a4f1e8433293c2f9c6e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic Pollution</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Carbon</topic><topic>China</topic><topic>Coking</topic><topic>domestic trade</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emission analysis</topic><topic>Emissions</topic><topic>Energy management</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>heat production</topic><topic>issues and policy</topic><topic>Network analysis</topic><topic>Nuclear fuels</topic><topic>petroleum</topic><topic>Research Article</topic><topic>Smelting</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Licheng</creatorcontrib><creatorcontrib>Qin, Lin</creatorcontrib><creatorcontrib>Taghizadeh-Hesary, Farhad</creatorcontrib><creatorcontrib>Zhang, Jijian</creatorcontrib><creatorcontrib>Mohsin, Muhammad</creatorcontrib><creatorcontrib>Chaudhry, Imran Sharif</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Licheng</au><au>Qin, Lin</au><au>Taghizadeh-Hesary, Farhad</au><au>Zhang, Jijian</au><au>Mohsin, Muhammad</au><au>Chaudhry, Imran Sharif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>27</volume><issue>18</issue><spage>23281</spage><epage>23300</epage><pages>23281-23300</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>Domestic trade plays a key role in China’s rapid economic progress. However, the increased domestic trade causes significant variations in carbon emission transfer among provinces. This study adopted the multi-region input-output (MRIO) model and social network analysis (SNA) to estimate the carbon emission transfer. Furthermore, the carbon emission transfer network characteristics among 30 provinces and 27 sectors were analyzed by using interprovincial input-output tables for 2007, 2010, and 2012. The results showed that (1) Large differences exist in carbon emission transfer flow and its network characteristics between provinces. (2) The three industrial sectors of metal smelting and pressing sector, power, heat production, and supply sector, petroleum processing, coking, and nuclear fuel processing sector have high carbon emission transfer and pose a strong influence on the carbon emission transfer network. (3) Provinces of the eastern region have a “bidirectional spillover” role, while those of the western region have a mediating role as an “agent.” Provinces of the central region have a “main inflow” role. Finally, useful policy implications and suggestions of this study are summarized.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32337669</pmid><doi>10.1007/s11356-020-08911-0</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2020-06, Vol.27 (18), p.23281-23300
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_miscellaneous_2574334772
source Springer Nature - Complete Springer Journals
subjects Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Carbon
China
Coking
domestic trade
Earth and Environmental Science
Ecotoxicology
Emission analysis
Emissions
Energy management
Environment
Environmental Chemistry
Environmental Health
Environmental science
heat production
issues and policy
Network analysis
Nuclear fuels
petroleum
Research Article
Smelting
Social network analysis
Social networks
Social organization
Waste Water Technology
Water Management
Water Pollution Control
title Analyzing carbon emission transfer network structure among provinces in China: new evidence from social network analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analyzing%20carbon%20emission%20transfer%20network%20structure%20among%20provinces%20in%20China:%20new%20evidence%20from%20social%20network%20analysis&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Sun,%20Licheng&rft.date=2020-06-01&rft.volume=27&rft.issue=18&rft.spage=23281&rft.epage=23300&rft.pages=23281-23300&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-020-08911-0&rft_dat=%3Cproquest_cross%3E2574334772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2412658295&rft_id=info:pmid/32337669&rfr_iscdi=true