Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing

Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2021-11, Vol.59 (11-12), p.2237-2252
Hauptverfasser: Gao, Qi, Liu, Xingli, Wang, Hongping, Wu, Peng, Jin, Mansu, Wei, RunJie, Wang, Wei, Niu, Zhaozhuo, Zhao, Shihua, Li, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2252
container_issue 11-12
container_start_page 2237
container_title Medical & biological engineering & computing
container_volume 59
creator Gao, Qi
Liu, Xingli
Wang, Hongping
Wu, Peng
Jin, Mansu
Wei, RunJie
Wang, Wei
Niu, Zhaozhuo
Zhao, Shihua
Li, Fei
description Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS wt method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS wt . The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions. Graphical abstract
doi_str_mv 10.1007/s11517-021-02417-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2573442052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573442052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOj7-gAsJuHFTTTJpky7FNyiCqNvQprczkbYZk8yI_nqvjg9w4SLkhvvdk3MPIbucHXLG1FHkPOcqY4LjkVjpFTLiSuJTSrlKRoxLljHO9QbZjPGJIZkLuU42xjIXmhdyRB5vZ8n17q1Kzg_Ut1Se0rbzL_Tm7oouoPPWpVfaOuga6gaapkArH1JFX1ya0sYtIExgsJC1AYDG3vs0dcNkm6y1VRdh5-veIg_nZ_cnl9n17cXVyfF1ZiUvUwYluhWsLCpdl9qKosDFygaEsrlC46zGghdWyyavlRZ1IXWTq7IQhVUA1XiLHCx1Z8E_zyEm07tooeuqAfw8GpGrsZSC5QLR_T_ok5-HAd0hpVGy1KVESiwpG3yMAVozC66vwqvhzHykbpapG8zSfKZuNA7tfUnP6x6an5HvmBEYL4GIrWEC4ffvf2TfAaAHip4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589629894</pqid></control><display><type>article</type><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</creator><creatorcontrib>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</creatorcontrib><description>Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS wt method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS wt . The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions. Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02417-8</identifier><identifier>PMID: 34528164</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aorta ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Blood flow ; Blood Flow Velocity ; Boundary conditions ; Computational fluid dynamics ; Computer Applications ; Divergence ; Estimation ; Fluid dynamics ; Hemodynamics ; Human Physiology ; Humans ; Hydrodynamics ; Imaging ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Optimization ; Original Article ; Radiology ; Shear stress ; Smoothing ; Stress, Mechanical ; Velocity ; Velocity distribution ; Velocity gradient ; Wall shear stresses</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2021-11, Vol.59 (11-12), p.2237-2252</ispartof><rights>International Federation for Medical and Biological Engineering 2021</rights><rights>2021. International Federation for Medical and Biological Engineering.</rights><rights>International Federation for Medical and Biological Engineering 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</citedby><cites>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02417-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02417-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34528164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Liu, Xingli</creatorcontrib><creatorcontrib>Wang, Hongping</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Jin, Mansu</creatorcontrib><creatorcontrib>Wei, RunJie</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Niu, Zhaozhuo</creatorcontrib><creatorcontrib>Zhao, Shihua</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS wt method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS wt . The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions. Graphical abstract</description><subject>Aorta</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer Applications</subject><subject>Divergence</subject><subject>Estimation</subject><subject>Fluid dynamics</subject><subject>Hemodynamics</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Shear stress</subject><subject>Smoothing</subject><subject>Stress, Mechanical</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity gradient</subject><subject>Wall shear stresses</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOj7-gAsJuHFTTTJpky7FNyiCqNvQprczkbYZk8yI_nqvjg9w4SLkhvvdk3MPIbucHXLG1FHkPOcqY4LjkVjpFTLiSuJTSrlKRoxLljHO9QbZjPGJIZkLuU42xjIXmhdyRB5vZ8n17q1Kzg_Ut1Se0rbzL_Tm7oouoPPWpVfaOuga6gaapkArH1JFX1ya0sYtIExgsJC1AYDG3vs0dcNkm6y1VRdh5-veIg_nZ_cnl9n17cXVyfF1ZiUvUwYluhWsLCpdl9qKosDFygaEsrlC46zGghdWyyavlRZ1IXWTq7IQhVUA1XiLHCx1Z8E_zyEm07tooeuqAfw8GpGrsZSC5QLR_T_ok5-HAd0hpVGy1KVESiwpG3yMAVozC66vwqvhzHykbpapG8zSfKZuNA7tfUnP6x6an5HvmBEYL4GIrWEC4ffvf2TfAaAHip4</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gao, Qi</creator><creator>Liu, Xingli</creator><creator>Wang, Hongping</creator><creator>Wu, Peng</creator><creator>Jin, Mansu</creator><creator>Wei, RunJie</creator><creator>Wang, Wei</creator><creator>Niu, Zhaozhuo</creator><creator>Zhao, Shihua</creator><creator>Li, Fei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><author>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer Applications</topic><topic>Divergence</topic><topic>Estimation</topic><topic>Fluid dynamics</topic><topic>Hemodynamics</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Shear stress</topic><topic>Smoothing</topic><topic>Stress, Mechanical</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity gradient</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Liu, Xingli</creatorcontrib><creatorcontrib>Wang, Hongping</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Jin, Mansu</creatorcontrib><creatorcontrib>Wei, RunJie</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Niu, Zhaozhuo</creatorcontrib><creatorcontrib>Zhao, Shihua</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qi</au><au>Liu, Xingli</au><au>Wang, Hongping</au><au>Wu, Peng</au><au>Jin, Mansu</au><au>Wei, RunJie</au><au>Wang, Wei</au><au>Niu, Zhaozhuo</au><au>Zhao, Shihua</au><au>Li, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>59</volume><issue>11-12</issue><spage>2237</spage><epage>2252</epage><pages>2237-2252</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS wt method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS wt . The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34528164</pmid><doi>10.1007/s11517-021-02417-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2021-11, Vol.59 (11-12), p.2237-2252
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_2573442052
source MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Aorta
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood flow
Blood Flow Velocity
Boundary conditions
Computational fluid dynamics
Computer Applications
Divergence
Estimation
Fluid dynamics
Hemodynamics
Human Physiology
Humans
Hydrodynamics
Imaging
Imaging, Three-Dimensional
Magnetic Resonance Imaging
Optimization
Original Article
Radiology
Shear stress
Smoothing
Stress, Mechanical
Velocity
Velocity distribution
Velocity gradient
Wall shear stresses
title Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%204D%20flow%20MRI%20velocity%20field%20in%20the%20aorta%20with%20divergence-free%20smoothing&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Gao,%20Qi&rft.date=2021-11-01&rft.volume=59&rft.issue=11-12&rft.spage=2237&rft.epage=2252&rft.pages=2237-2252&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02417-8&rft_dat=%3Cproquest_cross%3E2573442052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589629894&rft_id=info:pmid/34528164&rfr_iscdi=true