Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing
Divergence-free smoothing with wall treatment (DFS wt ) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2021-11, Vol.59 (11-12), p.2237-2252 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2252 |
---|---|
container_issue | 11-12 |
container_start_page | 2237 |
container_title | Medical & biological engineering & computing |
container_volume | 59 |
creator | Gao, Qi Liu, Xingli Wang, Hongping Wu, Peng Jin, Mansu Wei, RunJie Wang, Wei Niu, Zhaozhuo Zhao, Shihua Li, Fei |
description | Divergence-free smoothing with wall treatment (DFS
wt
) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS
wt
method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS
wt
. The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions.
Graphical abstract |
doi_str_mv | 10.1007/s11517-021-02417-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2573442052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573442052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOj7-gAsJuHFTTTJpky7FNyiCqNvQprczkbYZk8yI_nqvjg9w4SLkhvvdk3MPIbucHXLG1FHkPOcqY4LjkVjpFTLiSuJTSrlKRoxLljHO9QbZjPGJIZkLuU42xjIXmhdyRB5vZ8n17q1Kzg_Ut1Se0rbzL_Tm7oouoPPWpVfaOuga6gaapkArH1JFX1ya0sYtIExgsJC1AYDG3vs0dcNkm6y1VRdh5-veIg_nZ_cnl9n17cXVyfF1ZiUvUwYluhWsLCpdl9qKosDFygaEsrlC46zGghdWyyavlRZ1IXWTq7IQhVUA1XiLHCx1Z8E_zyEm07tooeuqAfw8GpGrsZSC5QLR_T_ok5-HAd0hpVGy1KVESiwpG3yMAVozC66vwqvhzHykbpapG8zSfKZuNA7tfUnP6x6an5HvmBEYL4GIrWEC4ffvf2TfAaAHip4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2589629894</pqid></control><display><type>article</type><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><source>MEDLINE</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</creator><creatorcontrib>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</creatorcontrib><description>Divergence-free smoothing with wall treatment (DFS
wt
) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS
wt
method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS
wt
. The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions.
Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-021-02417-8</identifier><identifier>PMID: 34528164</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aorta ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Blood flow ; Blood Flow Velocity ; Boundary conditions ; Computational fluid dynamics ; Computer Applications ; Divergence ; Estimation ; Fluid dynamics ; Hemodynamics ; Human Physiology ; Humans ; Hydrodynamics ; Imaging ; Imaging, Three-Dimensional ; Magnetic Resonance Imaging ; Optimization ; Original Article ; Radiology ; Shear stress ; Smoothing ; Stress, Mechanical ; Velocity ; Velocity distribution ; Velocity gradient ; Wall shear stresses</subject><ispartof>Medical & biological engineering & computing, 2021-11, Vol.59 (11-12), p.2237-2252</ispartof><rights>International Federation for Medical and Biological Engineering 2021</rights><rights>2021. International Federation for Medical and Biological Engineering.</rights><rights>International Federation for Medical and Biological Engineering 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</citedby><cites>FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-021-02417-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-021-02417-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34528164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Liu, Xingli</creatorcontrib><creatorcontrib>Wang, Hongping</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Jin, Mansu</creatorcontrib><creatorcontrib>Wei, RunJie</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Niu, Zhaozhuo</creatorcontrib><creatorcontrib>Zhao, Shihua</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Divergence-free smoothing with wall treatment (DFS
wt
) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS
wt
method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS
wt
. The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions.
Graphical abstract</description><subject>Aorta</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Blood Flow Velocity</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer Applications</subject><subject>Divergence</subject><subject>Estimation</subject><subject>Fluid dynamics</subject><subject>Hemodynamics</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional</subject><subject>Magnetic Resonance Imaging</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Shear stress</subject><subject>Smoothing</subject><subject>Stress, Mechanical</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity gradient</subject><subject>Wall shear stresses</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOj7-gAsJuHFTTTJpky7FNyiCqNvQprczkbYZk8yI_nqvjg9w4SLkhvvdk3MPIbucHXLG1FHkPOcqY4LjkVjpFTLiSuJTSrlKRoxLljHO9QbZjPGJIZkLuU42xjIXmhdyRB5vZ8n17q1Kzg_Ut1Se0rbzL_Tm7oouoPPWpVfaOuga6gaapkArH1JFX1ya0sYtIExgsJC1AYDG3vs0dcNkm6y1VRdh5-veIg_nZ_cnl9n17cXVyfF1ZiUvUwYluhWsLCpdl9qKosDFygaEsrlC46zGghdWyyavlRZ1IXWTq7IQhVUA1XiLHCx1Z8E_zyEm07tooeuqAfw8GpGrsZSC5QLR_T_ok5-HAd0hpVGy1KVESiwpG3yMAVozC66vwqvhzHykbpapG8zSfKZuNA7tfUnP6x6an5HvmBEYL4GIrWEC4ffvf2TfAaAHip4</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gao, Qi</creator><creator>Liu, Xingli</creator><creator>Wang, Hongping</creator><creator>Wu, Peng</creator><creator>Jin, Mansu</creator><creator>Wei, RunJie</creator><creator>Wang, Wei</creator><creator>Niu, Zhaozhuo</creator><creator>Zhao, Shihua</creator><creator>Li, Fei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20211101</creationdate><title>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</title><author>Gao, Qi ; Liu, Xingli ; Wang, Hongping ; Wu, Peng ; Jin, Mansu ; Wei, RunJie ; Wang, Wei ; Niu, Zhaozhuo ; Zhao, Shihua ; Li, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e97412096a8b98c2661009de27c570110b7c516c84d5b782b648d579626c7eea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Blood Flow Velocity</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer Applications</topic><topic>Divergence</topic><topic>Estimation</topic><topic>Fluid dynamics</topic><topic>Hemodynamics</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional</topic><topic>Magnetic Resonance Imaging</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Shear stress</topic><topic>Smoothing</topic><topic>Stress, Mechanical</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity gradient</topic><topic>Wall shear stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qi</creatorcontrib><creatorcontrib>Liu, Xingli</creatorcontrib><creatorcontrib>Wang, Hongping</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Jin, Mansu</creatorcontrib><creatorcontrib>Wei, RunJie</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Niu, Zhaozhuo</creatorcontrib><creatorcontrib>Zhao, Shihua</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qi</au><au>Liu, Xingli</au><au>Wang, Hongping</au><au>Wu, Peng</au><au>Jin, Mansu</au><au>Wei, RunJie</au><au>Wang, Wei</au><au>Niu, Zhaozhuo</au><au>Zhao, Shihua</au><au>Li, Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>59</volume><issue>11-12</issue><spage>2237</spage><epage>2252</epage><pages>2237-2252</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Divergence-free smoothing with wall treatment (DFS
wt
) method is proposed for processing with four-dimensional (4D) flow magnetic resonance imaging (MRI) data of blood flows to enhance the quality of flow field with physical constraints. The new method satisfies the no-slip wall boundary condition and applies wall function of velocity profile for better estimating the velocity gradient in the near-wall region, and consequently improved wall shear stress (WSS) calculation against the issue of coarse resolution of 4D flow MRI. In the first testing case, blood flow field obtained from 4D flow MRI is well smoothed by DFS
wt
method. A great consistency is observed between the post-processed 4D flow MRI data and the computational fluid dynamics (CFD) data in the interested velocity field. WSS has an apparent improvement due to the proposed near-wall treatment with special wall function comparing to the result from original 4D flow MRI data or the DFS-processed data with no wall function. The other five cases also show the same performance that smoothed velocity field and improved WSS estimation are achieved on 4D flow MRI data optimized by DFS
wt
. The improvements will benefit the study of hemodynamics regarding the determination of location or the potential possibility of lesions.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34528164</pmid><doi>10.1007/s11517-021-02417-8</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2021-11, Vol.59 (11-12), p.2237-2252 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_2573442052 |
source | MEDLINE; Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Aorta Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blood flow Blood Flow Velocity Boundary conditions Computational fluid dynamics Computer Applications Divergence Estimation Fluid dynamics Hemodynamics Human Physiology Humans Hydrodynamics Imaging Imaging, Three-Dimensional Magnetic Resonance Imaging Optimization Original Article Radiology Shear stress Smoothing Stress, Mechanical Velocity Velocity distribution Velocity gradient Wall shear stresses |
title | Optimization of 4D flow MRI velocity field in the aorta with divergence-free smoothing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%204D%20flow%20MRI%20velocity%20field%20in%20the%20aorta%20with%20divergence-free%20smoothing&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Gao,%20Qi&rft.date=2021-11-01&rft.volume=59&rft.issue=11-12&rft.spage=2237&rft.epage=2252&rft.pages=2237-2252&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-021-02417-8&rft_dat=%3Cproquest_cross%3E2573442052%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2589629894&rft_id=info:pmid/34528164&rfr_iscdi=true |