Mathematical modeling of a single-wafer rapid thermal reactor
Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each cas...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 1992-12, Vol.139 (12), p.3682-3689 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3689 |
---|---|
container_issue | 12 |
container_start_page | 3682 |
container_title | Journal of the Electrochemical Society |
container_volume | 139 |
creator | CHATTERJEE, S TRACHTENBERG, I EDGAR, T. F |
description | Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally. |
doi_str_mv | 10.1149/1.2069144 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25733540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25733540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsHv8EeRPCwNbOZJM3Bg5T6Bype9Bwm2URXdrs12SJ-e7e0eJo38HsP3mPsEvgMAM0tzCquDCAesQkYlKUGgGM24RxEiUrCKTvL-Wt8YY56wu5eaPgMHQ2Np7bo-jq0zfqj6GNBRR5VG8ofiiEViTZNXYxs6kYwBfJDn87ZSaQ2h4vDnbL3h-Xb4qlcvT4-L-5Xpa_meigNeo51pVTQUVTeK62BJKm5IeciOQgmmoASRW0gCnA-knAKndTG1Y6LKbve525S_70NebBdk31oW1qHfpttJbUQEnfgzR70qc85hWg3qeko_VrgdjeQBXsYaGSvDqGUx_Ix0do3-d-AkvNKSPEHpGtkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25733540</pqid></control><display><type>article</type><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><source>Institute of Physics Journals</source><creator>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</creator><creatorcontrib>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</creatorcontrib><description>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.2069144</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Reactors</subject><ispartof>Journal of the Electrochemical Society, 1992-12, Vol.139 (12), p.3682-3689</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4500235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHATTERJEE, S</creatorcontrib><creatorcontrib>TRACHTENBERG, I</creatorcontrib><creatorcontrib>EDGAR, T. F</creatorcontrib><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><title>Journal of the Electrochemical Society</title><description>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Reactors</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsHv8EeRPCwNbOZJM3Bg5T6Bype9Bwm2URXdrs12SJ-e7e0eJo38HsP3mPsEvgMAM0tzCquDCAesQkYlKUGgGM24RxEiUrCKTvL-Wt8YY56wu5eaPgMHQ2Np7bo-jq0zfqj6GNBRR5VG8ofiiEViTZNXYxs6kYwBfJDn87ZSaQ2h4vDnbL3h-Xb4qlcvT4-L-5Xpa_meigNeo51pVTQUVTeK62BJKm5IeciOQgmmoASRW0gCnA-knAKndTG1Y6LKbve525S_70NebBdk31oW1qHfpttJbUQEnfgzR70qc85hWg3qeko_VrgdjeQBXsYaGSvDqGUx_Ix0do3-d-AkvNKSPEHpGtkRQ</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>CHATTERJEE, S</creator><creator>TRACHTENBERG, I</creator><creator>EDGAR, T. F</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19921201</creationdate><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><author>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHATTERJEE, S</creatorcontrib><creatorcontrib>TRACHTENBERG, I</creatorcontrib><creatorcontrib>EDGAR, T. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHATTERJEE, S</au><au>TRACHTENBERG, I</au><au>EDGAR, T. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of a single-wafer rapid thermal reactor</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1992-12-01</date><risdate>1992</risdate><volume>139</volume><issue>12</issue><spage>3682</spage><epage>3689</epage><pages>3682-3689</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.2069144</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4651 |
ispartof | Journal of the Electrochemical Society, 1992-12, Vol.139 (12), p.3682-3689 |
issn | 0013-4651 1945-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_25733540 |
source | Institute of Physics Journals |
subjects | Applied sciences Chemical engineering Exact sciences and technology Reactors |
title | Mathematical modeling of a single-wafer rapid thermal reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20a%20single-wafer%20rapid%20thermal%20reactor&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=CHATTERJEE,%20S&rft.date=1992-12-01&rft.volume=139&rft.issue=12&rft.spage=3682&rft.epage=3689&rft.pages=3682-3689&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.2069144&rft_dat=%3Cproquest_cross%3E25733540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25733540&rft_id=info:pmid/&rfr_iscdi=true |