Mathematical modeling of a single-wafer rapid thermal reactor

Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 1992-12, Vol.139 (12), p.3682-3689
Hauptverfasser: CHATTERJEE, S, TRACHTENBERG, I, EDGAR, T. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3689
container_issue 12
container_start_page 3682
container_title Journal of the Electrochemical Society
container_volume 139
creator CHATTERJEE, S
TRACHTENBERG, I
EDGAR, T. F
description Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.
doi_str_mv 10.1149/1.2069144
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25733540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25733540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsHv8EeRPCwNbOZJM3Bg5T6Bype9Bwm2URXdrs12SJ-e7e0eJo38HsP3mPsEvgMAM0tzCquDCAesQkYlKUGgGM24RxEiUrCKTvL-Wt8YY56wu5eaPgMHQ2Np7bo-jq0zfqj6GNBRR5VG8ofiiEViTZNXYxs6kYwBfJDn87ZSaQ2h4vDnbL3h-Xb4qlcvT4-L-5Xpa_meigNeo51pVTQUVTeK62BJKm5IeciOQgmmoASRW0gCnA-knAKndTG1Y6LKbve525S_70NebBdk31oW1qHfpttJbUQEnfgzR70qc85hWg3qeko_VrgdjeQBXsYaGSvDqGUx_Ix0do3-d-AkvNKSPEHpGtkRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25733540</pqid></control><display><type>article</type><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><source>Institute of Physics Journals</source><creator>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</creator><creatorcontrib>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</creatorcontrib><description>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</description><identifier>ISSN: 0013-4651</identifier><identifier>EISSN: 1945-7111</identifier><identifier>DOI: 10.1149/1.2069144</identifier><identifier>CODEN: JESOAN</identifier><language>eng</language><publisher>Pennington, NJ: Electrochemical Society</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Reactors</subject><ispartof>Journal of the Electrochemical Society, 1992-12, Vol.139 (12), p.3682-3689</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4500235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CHATTERJEE, S</creatorcontrib><creatorcontrib>TRACHTENBERG, I</creatorcontrib><creatorcontrib>EDGAR, T. F</creatorcontrib><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><title>Journal of the Electrochemical Society</title><description>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Reactors</subject><issn>0013-4651</issn><issn>1945-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsHv8EeRPCwNbOZJM3Bg5T6Bype9Bwm2URXdrs12SJ-e7e0eJo38HsP3mPsEvgMAM0tzCquDCAesQkYlKUGgGM24RxEiUrCKTvL-Wt8YY56wu5eaPgMHQ2Np7bo-jq0zfqj6GNBRR5VG8ofiiEViTZNXYxs6kYwBfJDn87ZSaQ2h4vDnbL3h-Xb4qlcvT4-L-5Xpa_meigNeo51pVTQUVTeK62BJKm5IeciOQgmmoASRW0gCnA-knAKndTG1Y6LKbve525S_70NebBdk31oW1qHfpttJbUQEnfgzR70qc85hWg3qeko_VrgdjeQBXsYaGSvDqGUx_Ix0do3-d-AkvNKSPEHpGtkRQ</recordid><startdate>19921201</startdate><enddate>19921201</enddate><creator>CHATTERJEE, S</creator><creator>TRACHTENBERG, I</creator><creator>EDGAR, T. F</creator><general>Electrochemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>19921201</creationdate><title>Mathematical modeling of a single-wafer rapid thermal reactor</title><author>CHATTERJEE, S ; TRACHTENBERG, I ; EDGAR, T. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-94c04d266e7f32cc6771a5a689abbfab1e9f9e4543d91f31bcfa3b64b579bdb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHATTERJEE, S</creatorcontrib><creatorcontrib>TRACHTENBERG, I</creatorcontrib><creatorcontrib>EDGAR, T. F</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the Electrochemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHATTERJEE, S</au><au>TRACHTENBERG, I</au><au>EDGAR, T. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling of a single-wafer rapid thermal reactor</atitle><jtitle>Journal of the Electrochemical Society</jtitle><date>1992-12-01</date><risdate>1992</risdate><volume>139</volume><issue>12</issue><spage>3682</spage><epage>3689</epage><pages>3682-3689</pages><issn>0013-4651</issn><eissn>1945-7111</eissn><coden>JESOAN</coden><abstract>Transient two-dimensional models have been used to simulate rapid thermal processing (RTP) in a cylindrical single-wafer reactor. The modeling has been analyzed at various levels of simplification to identify the dominant factors governing heat transfer and fluid flow inside the reactor. In each case, the thermal patterns on the wafer surface, both in the dynamic and steady states, are of special interest since temperature profiles are predominantly responsible for the thickness variation in the as-deposited or thermally grown RTP films. The thermal distribution is a function of process variables such as the ambient gas and operating pressure. Additionally, the thermal profiles predicted by the model are in good qualitative agreement with those found experimentally.</abstract><cop>Pennington, NJ</cop><pub>Electrochemical Society</pub><doi>10.1149/1.2069144</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4651
ispartof Journal of the Electrochemical Society, 1992-12, Vol.139 (12), p.3682-3689
issn 0013-4651
1945-7111
language eng
recordid cdi_proquest_miscellaneous_25733540
source Institute of Physics Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Reactors
title Mathematical modeling of a single-wafer rapid thermal reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A37%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20of%20a%20single-wafer%20rapid%20thermal%20reactor&rft.jtitle=Journal%20of%20the%20Electrochemical%20Society&rft.au=CHATTERJEE,%20S&rft.date=1992-12-01&rft.volume=139&rft.issue=12&rft.spage=3682&rft.epage=3689&rft.pages=3682-3689&rft.issn=0013-4651&rft.eissn=1945-7111&rft.coden=JESOAN&rft_id=info:doi/10.1149/1.2069144&rft_dat=%3Cproquest_cross%3E25733540%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25733540&rft_id=info:pmid/&rfr_iscdi=true