In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods

Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (37), p.44479-44487
Hauptverfasser: Ye, Hongjun, Gui, Siwei, Wang, Zaifa, Chen, Jingzhao, Liu, Qiunan, Zhang, Xuedong, Jia, Peng, Tang, Yushu, Yang, Tingting, Du, Congcong, Geng, Lin, Li, Hui, Dai, Qiushi, Tang, Yongfu, Zhang, Liqiang, Yang, Hui, Huang, Jianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44487
container_issue 37
container_start_page 44479
container_title ACS applied materials & interfaces
container_volume 13
creator Ye, Hongjun
Gui, Siwei
Wang, Zaifa
Chen, Jingzhao
Liu, Qiunan
Zhang, Xuedong
Jia, Peng
Tang, Yushu
Yang, Tingting
Du, Congcong
Geng, Lin
Li, Hui
Dai, Qiushi
Tang, Yongfu
Zhang, Liqiang
Yang, Hui
Huang, Jianyu
description Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2CO3 and Li2O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2CO3 and Li2O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2CO3 and Li2O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2CO3 ranges from 192 to 330 MPa, while that of Li2O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries.
doi_str_mv 10.1021/acsami.1c13732
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572529713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572529713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a153t-83112414b9147bb44cb5d815fe20cdde1b0b231ba013c54c65eb7ca81b879a6b3</originalsourceid><addsrcrecordid>eNo9kM1LAzEUxIMoWKtXzzmKsDUvH93do9SqhWoF9bwk2VeasrupSfbgf-_2A09veDMMw4-QW2ATYBwetI26dROwIHLBz8gISimzgit-_q-lvCRXMW4ZmwrO1Ii4RUc_XerpG-rYB2yxS5H6NU0bHH52oztndUM_gt9hSA4P5rxBm4K3G2z3bvNLn3Dno0tY06Xjs5WgujvIFX3XnQ--jtfkYq2biDenOybfz_Ov2Wu2XL0sZo_LTIMSKSsEAJcgTQkyN0ZKa1RdgFojZ7auEQwzXIDRDIRV0k4VmtzqAkyRl3pqxJjcHXt3wf_0GFPVumixaXSHvo8VV_mApMxBDNH7Y3RAV219H7phWAWs2vOsjjyrE0_xB5ZzaaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572529713</pqid></control><display><type>article</type><title>In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods</title><source>American Chemical Society Journals</source><creator>Ye, Hongjun ; Gui, Siwei ; Wang, Zaifa ; Chen, Jingzhao ; Liu, Qiunan ; Zhang, Xuedong ; Jia, Peng ; Tang, Yushu ; Yang, Tingting ; Du, Congcong ; Geng, Lin ; Li, Hui ; Dai, Qiushi ; Tang, Yongfu ; Zhang, Liqiang ; Yang, Hui ; Huang, Jianyu</creator><creatorcontrib>Ye, Hongjun ; Gui, Siwei ; Wang, Zaifa ; Chen, Jingzhao ; Liu, Qiunan ; Zhang, Xuedong ; Jia, Peng ; Tang, Yushu ; Yang, Tingting ; Du, Congcong ; Geng, Lin ; Li, Hui ; Dai, Qiushi ; Tang, Yongfu ; Zhang, Liqiang ; Yang, Hui ; Huang, Jianyu</creatorcontrib><description>Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2CO3 and Li2O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2CO3 and Li2O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2CO3 and Li2O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2CO3 ranges from 192 to 330 MPa, while that of Li2O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c13732</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2021-09, Vol.13 (37), p.44479-44487</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2628-4676 ; 0000-0002-8424-5368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c13732$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c13732$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Ye, Hongjun</creatorcontrib><creatorcontrib>Gui, Siwei</creatorcontrib><creatorcontrib>Wang, Zaifa</creatorcontrib><creatorcontrib>Chen, Jingzhao</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Zhang, Xuedong</creatorcontrib><creatorcontrib>Jia, Peng</creatorcontrib><creatorcontrib>Tang, Yushu</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Du, Congcong</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Dai, Qiushi</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><title>In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2CO3 and Li2O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2CO3 and Li2O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2CO3 and Li2O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2CO3 ranges from 192 to 330 MPa, while that of Li2O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LAzEUxIMoWKtXzzmKsDUvH93do9SqhWoF9bwk2VeasrupSfbgf-_2A09veDMMw4-QW2ATYBwetI26dROwIHLBz8gISimzgit-_q-lvCRXMW4ZmwrO1Ii4RUc_XerpG-rYB2yxS5H6NU0bHH52oztndUM_gt9hSA4P5rxBm4K3G2z3bvNLn3Dno0tY06Xjs5WgujvIFX3XnQ--jtfkYq2biDenOybfz_Ov2Wu2XL0sZo_LTIMSKSsEAJcgTQkyN0ZKa1RdgFojZ7auEQwzXIDRDIRV0k4VmtzqAkyRl3pqxJjcHXt3wf_0GFPVumixaXSHvo8VV_mApMxBDNH7Y3RAV219H7phWAWs2vOsjjyrE0_xB5ZzaaI</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Ye, Hongjun</creator><creator>Gui, Siwei</creator><creator>Wang, Zaifa</creator><creator>Chen, Jingzhao</creator><creator>Liu, Qiunan</creator><creator>Zhang, Xuedong</creator><creator>Jia, Peng</creator><creator>Tang, Yushu</creator><creator>Yang, Tingting</creator><creator>Du, Congcong</creator><creator>Geng, Lin</creator><creator>Li, Hui</creator><creator>Dai, Qiushi</creator><creator>Tang, Yongfu</creator><creator>Zhang, Liqiang</creator><creator>Yang, Hui</creator><creator>Huang, Jianyu</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2628-4676</orcidid><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid></search><sort><creationdate>20210922</creationdate><title>In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods</title><author>Ye, Hongjun ; Gui, Siwei ; Wang, Zaifa ; Chen, Jingzhao ; Liu, Qiunan ; Zhang, Xuedong ; Jia, Peng ; Tang, Yushu ; Yang, Tingting ; Du, Congcong ; Geng, Lin ; Li, Hui ; Dai, Qiushi ; Tang, Yongfu ; Zhang, Liqiang ; Yang, Hui ; Huang, Jianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a153t-83112414b9147bb44cb5d815fe20cdde1b0b231ba013c54c65eb7ca81b879a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Hongjun</creatorcontrib><creatorcontrib>Gui, Siwei</creatorcontrib><creatorcontrib>Wang, Zaifa</creatorcontrib><creatorcontrib>Chen, Jingzhao</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Zhang, Xuedong</creatorcontrib><creatorcontrib>Jia, Peng</creatorcontrib><creatorcontrib>Tang, Yushu</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Du, Congcong</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Dai, Qiushi</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Hongjun</au><au>Gui, Siwei</au><au>Wang, Zaifa</au><au>Chen, Jingzhao</au><au>Liu, Qiunan</au><au>Zhang, Xuedong</au><au>Jia, Peng</au><au>Tang, Yushu</au><au>Yang, Tingting</au><au>Du, Congcong</au><au>Geng, Lin</au><au>Li, Hui</au><au>Dai, Qiushi</au><au>Tang, Yongfu</au><au>Zhang, Liqiang</au><au>Yang, Hui</au><au>Huang, Jianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>13</volume><issue>37</issue><spage>44479</spage><epage>44487</epage><pages>44479-44487</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solid-electrolyte interface (SEI) is “the most important but least understood (component) in rechargeable Li-ion batteries”. The ideal SEI requires high elastic strength and can resist the penetration of a Li dendrite mechanically, which is vital for inhibiting the dendrite growth in lithium batteries. Even though Li2CO3 and Li2O are identified as the major components of SEI, their mechanical properties are not well understood. Herein, SEI-related materials such as Li2CO3 and Li2O were electrochemically deposited using an environmental transmission electron microscopy (ETEM), and their mechanical properties were assessed by in situ atomic force microscopy (AFM) and inverse finite element simulations. Both Li2CO3 and Li2O exhibit nanocrystalline structures and good plasticity. The ultimate strength of Li2CO3 ranges from 192 to 330 MPa, while that of Li2O is less than 100 MPa. These results provide a new understanding of the SEI and its related dendritic problems in lithium batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c13732</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2628-4676</orcidid><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-09, Vol.13 (37), p.44479-44487
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2572529713
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title In Situ Measurements of the Mechanical Properties of Electrochemically Deposited Li2CO3 and Li2O Nanorods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Measurements%20of%20the%20Mechanical%20Properties%20of%20Electrochemically%20Deposited%20Li2CO3%20and%20Li2O%20Nanorods&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ye,%20Hongjun&rft.date=2021-09-22&rft.volume=13&rft.issue=37&rft.spage=44479&rft.epage=44487&rft.pages=44479-44487&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c13732&rft_dat=%3Cproquest_acs_j%3E2572529713%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572529713&rft_id=info:pmid/&rfr_iscdi=true