Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells

Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-10, Vol.17 (38), p.8678-8692
Hauptverfasser: Hussmann, Larissa, Belthle, Thomke, Demco, Dan E., Fechete, Radu, Pich, Andrij
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8692
container_issue 38
container_start_page 8678
container_title Soft matter
container_volume 17
creator Hussmann, Larissa
Belthle, Thomke
Demco, Dan E.
Fechete, Radu
Pich, Andrij
description Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly( N -vinylcaprolactam- co -1-vinyl-3-methylimidazolium) (poly(VCL-VIM + )) microgels carrying permanent positive charges and demonstrate that 1 H high-resolution NMR spectroscopy in combination with transverse ( T 2 ) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM + ) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM + comonomer in the polymer network.
doi_str_mv 10.1039/d1sm01007g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572526652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572526652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEEmNw4RdE4oKQOvLVJuWGxhhIQxy2A7fKTdMtU9uMpAXBr6fdEAdOtl8_tuwXoUtKJpTw9LagoSaUELk-QiMqhYgSJdTxX87fTtFZCFtCuBI0GaHNsrV1V9nIm7BzTbAfBtdWe7c2VcCftt1gDa11jdW4dta01oQ7rDfgQbfG2-99E0NTYNv0Qq8O9X5wNsHaVRZrU1XhHJ2UUAVz8RvHaPU4W02fosXr_Hl6v4g0S1kbGcMhiSXkIDQwkXAlqUlT0r-UF5zFSimpcyJKJiWjCmLQJSgwAIyKHPgYXR_W7rx770xos9qG4QBojOtCxmLJYpYkMevRq3_o1nW-6Y8bqJSnMk5lT90cqN6TELwps523NfivjJJs8Dx7oMuXvedz_gP4unWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579397597</pqid></control><display><type>article</type><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</creator><creatorcontrib>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</creatorcontrib><description>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly( N -vinylcaprolactam- co -1-vinyl-3-methylimidazolium) (poly(VCL-VIM + )) microgels carrying permanent positive charges and demonstrate that 1 H high-resolution NMR spectroscopy in combination with transverse ( T 2 ) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM + ) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM + comonomer in the polymer network.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm01007g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiinfectives and antibacterials ; Biocompatibility ; Copolymers ; Drug development ; E coli ; Electrophoretic mobility ; Entropy ; Functional groups ; Magnetic resonance spectroscopy ; Microgels ; N-vinylcaprolactam ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Peptides ; Phase transitions ; Polymers ; Spatial distribution ; Stimuli ; Transition temperatures</subject><ispartof>Soft matter, 2021-10, Vol.17 (38), p.8678-8692</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</citedby><cites>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</cites><orcidid>0000-0003-1825-7798 ; 0000-0003-0217-5456 ; 0000-0001-6802-4189 ; 0000-0003-1789-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hussmann, Larissa</creatorcontrib><creatorcontrib>Belthle, Thomke</creatorcontrib><creatorcontrib>Demco, Dan E.</creatorcontrib><creatorcontrib>Fechete, Radu</creatorcontrib><creatorcontrib>Pich, Andrij</creatorcontrib><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><title>Soft matter</title><description>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly( N -vinylcaprolactam- co -1-vinyl-3-methylimidazolium) (poly(VCL-VIM + )) microgels carrying permanent positive charges and demonstrate that 1 H high-resolution NMR spectroscopy in combination with transverse ( T 2 ) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM + ) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM + comonomer in the polymer network.</description><subject>Antiinfectives and antibacterials</subject><subject>Biocompatibility</subject><subject>Copolymers</subject><subject>Drug development</subject><subject>E coli</subject><subject>Electrophoretic mobility</subject><subject>Entropy</subject><subject>Functional groups</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microgels</subject><subject>N-vinylcaprolactam</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Phase transitions</subject><subject>Polymers</subject><subject>Spatial distribution</subject><subject>Stimuli</subject><subject>Transition temperatures</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEEmNw4RdE4oKQOvLVJuWGxhhIQxy2A7fKTdMtU9uMpAXBr6fdEAdOtl8_tuwXoUtKJpTw9LagoSaUELk-QiMqhYgSJdTxX87fTtFZCFtCuBI0GaHNsrV1V9nIm7BzTbAfBtdWe7c2VcCftt1gDa11jdW4dta01oQ7rDfgQbfG2-99E0NTYNv0Qq8O9X5wNsHaVRZrU1XhHJ2UUAVz8RvHaPU4W02fosXr_Hl6v4g0S1kbGcMhiSXkIDQwkXAlqUlT0r-UF5zFSimpcyJKJiWjCmLQJSgwAIyKHPgYXR_W7rx770xos9qG4QBojOtCxmLJYpYkMevRq3_o1nW-6Y8bqJSnMk5lT90cqN6TELwps523NfivjJJs8Dx7oMuXvedz_gP4unWf</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Hussmann, Larissa</creator><creator>Belthle, Thomke</creator><creator>Demco, Dan E.</creator><creator>Fechete, Radu</creator><creator>Pich, Andrij</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1825-7798</orcidid><orcidid>https://orcid.org/0000-0003-0217-5456</orcidid><orcidid>https://orcid.org/0000-0001-6802-4189</orcidid><orcidid>https://orcid.org/0000-0003-1789-7793</orcidid></search><sort><creationdate>20211006</creationdate><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><author>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Biocompatibility</topic><topic>Copolymers</topic><topic>Drug development</topic><topic>E coli</topic><topic>Electrophoretic mobility</topic><topic>Entropy</topic><topic>Functional groups</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microgels</topic><topic>N-vinylcaprolactam</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Phase transitions</topic><topic>Polymers</topic><topic>Spatial distribution</topic><topic>Stimuli</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussmann, Larissa</creatorcontrib><creatorcontrib>Belthle, Thomke</creatorcontrib><creatorcontrib>Demco, Dan E.</creatorcontrib><creatorcontrib>Fechete, Radu</creatorcontrib><creatorcontrib>Pich, Andrij</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussmann, Larissa</au><au>Belthle, Thomke</au><au>Demco, Dan E.</au><au>Fechete, Radu</au><au>Pich, Andrij</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</atitle><jtitle>Soft matter</jtitle><date>2021-10-06</date><risdate>2021</risdate><volume>17</volume><issue>38</issue><spage>8678</spage><epage>8692</epage><pages>8678-8692</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly( N -vinylcaprolactam- co -1-vinyl-3-methylimidazolium) (poly(VCL-VIM + )) microgels carrying permanent positive charges and demonstrate that 1 H high-resolution NMR spectroscopy in combination with transverse ( T 2 ) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM + ) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM + comonomer in the polymer network.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm01007g</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1825-7798</orcidid><orcidid>https://orcid.org/0000-0003-0217-5456</orcidid><orcidid>https://orcid.org/0000-0001-6802-4189</orcidid><orcidid>https://orcid.org/0000-0003-1789-7793</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-10, Vol.17 (38), p.8678-8692
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2572526652
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Antiinfectives and antibacterials
Biocompatibility
Copolymers
Drug development
E coli
Electrophoretic mobility
Entropy
Functional groups
Magnetic resonance spectroscopy
Microgels
N-vinylcaprolactam
NMR
NMR spectroscopy
Nuclear magnetic resonance
Peptides
Phase transitions
Polymers
Spatial distribution
Stimuli
Transition temperatures
title Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimuli-responsive%20microgels%20with%20cationic%20moieties:%20characterization%20and%20interaction%20with%20E.%20coli%20cells&rft.jtitle=Soft%20matter&rft.au=Hussmann,%20Larissa&rft.date=2021-10-06&rft.volume=17&rft.issue=38&rft.spage=8678&rft.epage=8692&rft.pages=8678-8692&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm01007g&rft_dat=%3Cproquest_cross%3E2572526652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579397597&rft_id=info:pmid/&rfr_iscdi=true