Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells
Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial dist...
Gespeichert in:
Veröffentlicht in: | Soft matter 2021-10, Vol.17 (38), p.8678-8692 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8692 |
---|---|
container_issue | 38 |
container_start_page | 8678 |
container_title | Soft matter |
container_volume | 17 |
creator | Hussmann, Larissa Belthle, Thomke Demco, Dan E. Fechete, Radu Pich, Andrij |
description | Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(
N
-vinylcaprolactam-
co
-1-vinyl-3-methylimidazolium) (poly(VCL-VIM
+
)) microgels carrying permanent positive charges and demonstrate that
1
H high-resolution NMR spectroscopy in combination with transverse (
T
2
) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM
+
) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative
E. coli
strains, due to the positive charge of the incorporated VIM
+
comonomer in the polymer network. |
doi_str_mv | 10.1039/d1sm01007g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572526652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572526652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEEmNw4RdE4oKQOvLVJuWGxhhIQxy2A7fKTdMtU9uMpAXBr6fdEAdOtl8_tuwXoUtKJpTw9LagoSaUELk-QiMqhYgSJdTxX87fTtFZCFtCuBI0GaHNsrV1V9nIm7BzTbAfBtdWe7c2VcCftt1gDa11jdW4dta01oQ7rDfgQbfG2-99E0NTYNv0Qq8O9X5wNsHaVRZrU1XhHJ2UUAVz8RvHaPU4W02fosXr_Hl6v4g0S1kbGcMhiSXkIDQwkXAlqUlT0r-UF5zFSimpcyJKJiWjCmLQJSgwAIyKHPgYXR_W7rx770xos9qG4QBojOtCxmLJYpYkMevRq3_o1nW-6Y8bqJSnMk5lT90cqN6TELwps523NfivjJJs8Dx7oMuXvedz_gP4unWf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579397597</pqid></control><display><type>article</type><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</creator><creatorcontrib>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</creatorcontrib><description>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(
N
-vinylcaprolactam-
co
-1-vinyl-3-methylimidazolium) (poly(VCL-VIM
+
)) microgels carrying permanent positive charges and demonstrate that
1
H high-resolution NMR spectroscopy in combination with transverse (
T
2
) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM
+
) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative
E. coli
strains, due to the positive charge of the incorporated VIM
+
comonomer in the polymer network.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d1sm01007g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antiinfectives and antibacterials ; Biocompatibility ; Copolymers ; Drug development ; E coli ; Electrophoretic mobility ; Entropy ; Functional groups ; Magnetic resonance spectroscopy ; Microgels ; N-vinylcaprolactam ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Peptides ; Phase transitions ; Polymers ; Spatial distribution ; Stimuli ; Transition temperatures</subject><ispartof>Soft matter, 2021-10, Vol.17 (38), p.8678-8692</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</citedby><cites>FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</cites><orcidid>0000-0003-1825-7798 ; 0000-0003-0217-5456 ; 0000-0001-6802-4189 ; 0000-0003-1789-7793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Hussmann, Larissa</creatorcontrib><creatorcontrib>Belthle, Thomke</creatorcontrib><creatorcontrib>Demco, Dan E.</creatorcontrib><creatorcontrib>Fechete, Radu</creatorcontrib><creatorcontrib>Pich, Andrij</creatorcontrib><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><title>Soft matter</title><description>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(
N
-vinylcaprolactam-
co
-1-vinyl-3-methylimidazolium) (poly(VCL-VIM
+
)) microgels carrying permanent positive charges and demonstrate that
1
H high-resolution NMR spectroscopy in combination with transverse (
T
2
) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM
+
) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative
E. coli
strains, due to the positive charge of the incorporated VIM
+
comonomer in the polymer network.</description><subject>Antiinfectives and antibacterials</subject><subject>Biocompatibility</subject><subject>Copolymers</subject><subject>Drug development</subject><subject>E coli</subject><subject>Electrophoretic mobility</subject><subject>Entropy</subject><subject>Functional groups</subject><subject>Magnetic resonance spectroscopy</subject><subject>Microgels</subject><subject>N-vinylcaprolactam</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Peptides</subject><subject>Phase transitions</subject><subject>Polymers</subject><subject>Spatial distribution</subject><subject>Stimuli</subject><subject>Transition temperatures</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1PwzAMhiMEEmNw4RdE4oKQOvLVJuWGxhhIQxy2A7fKTdMtU9uMpAXBr6fdEAdOtl8_tuwXoUtKJpTw9LagoSaUELk-QiMqhYgSJdTxX87fTtFZCFtCuBI0GaHNsrV1V9nIm7BzTbAfBtdWe7c2VcCftt1gDa11jdW4dta01oQ7rDfgQbfG2-99E0NTYNv0Qq8O9X5wNsHaVRZrU1XhHJ2UUAVz8RvHaPU4W02fosXr_Hl6v4g0S1kbGcMhiSXkIDQwkXAlqUlT0r-UF5zFSimpcyJKJiWjCmLQJSgwAIyKHPgYXR_W7rx770xos9qG4QBojOtCxmLJYpYkMevRq3_o1nW-6Y8bqJSnMk5lT90cqN6TELwps523NfivjJJs8Dx7oMuXvedz_gP4unWf</recordid><startdate>20211006</startdate><enddate>20211006</enddate><creator>Hussmann, Larissa</creator><creator>Belthle, Thomke</creator><creator>Demco, Dan E.</creator><creator>Fechete, Radu</creator><creator>Pich, Andrij</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1825-7798</orcidid><orcidid>https://orcid.org/0000-0003-0217-5456</orcidid><orcidid>https://orcid.org/0000-0001-6802-4189</orcidid><orcidid>https://orcid.org/0000-0003-1789-7793</orcidid></search><sort><creationdate>20211006</creationdate><title>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</title><author>Hussmann, Larissa ; Belthle, Thomke ; Demco, Dan E. ; Fechete, Radu ; Pich, Andrij</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ee3a657aba4ca2463871e990007bd3258887cb04f277218a5acfa8aeaa214ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Biocompatibility</topic><topic>Copolymers</topic><topic>Drug development</topic><topic>E coli</topic><topic>Electrophoretic mobility</topic><topic>Entropy</topic><topic>Functional groups</topic><topic>Magnetic resonance spectroscopy</topic><topic>Microgels</topic><topic>N-vinylcaprolactam</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Peptides</topic><topic>Phase transitions</topic><topic>Polymers</topic><topic>Spatial distribution</topic><topic>Stimuli</topic><topic>Transition temperatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussmann, Larissa</creatorcontrib><creatorcontrib>Belthle, Thomke</creatorcontrib><creatorcontrib>Demco, Dan E.</creatorcontrib><creatorcontrib>Fechete, Radu</creatorcontrib><creatorcontrib>Pich, Andrij</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussmann, Larissa</au><au>Belthle, Thomke</au><au>Demco, Dan E.</au><au>Fechete, Radu</au><au>Pich, Andrij</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells</atitle><jtitle>Soft matter</jtitle><date>2021-10-06</date><risdate>2021</risdate><volume>17</volume><issue>38</issue><spage>8678</spage><epage>8692</epage><pages>8678-8692</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(
N
-vinylcaprolactam-
co
-1-vinyl-3-methylimidazolium) (poly(VCL-VIM
+
)) microgels carrying permanent positive charges and demonstrate that
1
H high-resolution NMR spectroscopy in combination with transverse (
T
2
) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core–corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM
+
) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative
E. coli
strains, due to the positive charge of the incorporated VIM
+
comonomer in the polymer network.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1sm01007g</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1825-7798</orcidid><orcidid>https://orcid.org/0000-0003-0217-5456</orcidid><orcidid>https://orcid.org/0000-0001-6802-4189</orcidid><orcidid>https://orcid.org/0000-0003-1789-7793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1744-683X |
ispartof | Soft matter, 2021-10, Vol.17 (38), p.8678-8692 |
issn | 1744-683X 1744-6848 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572526652 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Antiinfectives and antibacterials Biocompatibility Copolymers Drug development E coli Electrophoretic mobility Entropy Functional groups Magnetic resonance spectroscopy Microgels N-vinylcaprolactam NMR NMR spectroscopy Nuclear magnetic resonance Peptides Phase transitions Polymers Spatial distribution Stimuli Transition temperatures |
title | Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stimuli-responsive%20microgels%20with%20cationic%20moieties:%20characterization%20and%20interaction%20with%20E.%20coli%20cells&rft.jtitle=Soft%20matter&rft.au=Hussmann,%20Larissa&rft.date=2021-10-06&rft.volume=17&rft.issue=38&rft.spage=8678&rft.epage=8692&rft.pages=8678-8692&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d1sm01007g&rft_dat=%3Cproquest_cross%3E2572526652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2579397597&rft_id=info:pmid/&rfr_iscdi=true |