Mito‐Bomb: Targeting Mitochondria for Cancer Therapy
Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic t...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-10, Vol.33 (43), p.e2007778-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 43 |
container_start_page | e2007778 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Guo, Xiaolu Yang, Naidi Ji, Wenhui Zhang, Hang Dong, Xiao Zhou, Zhiqiang Li, Lin Shen, Han‐Ming Yao, Shao Q. Huang, Wei |
description | Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy.
The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail. |
doi_str_mv | 10.1002/adma.202007778 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572231654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572231654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWgprIwoEgtLyolvidlKuUqtWMps2Y7TpmriYjdC3XgEnpEnIVVLkViYLB1_59fRj9B5Av0EAF-rvFJ9DBggTdPsAHUThpOYgmCHqAuCsFhwmnXQSQhzABAc-DHqEMoSYJx0ER-XK_f18XnrKn0TTZSf2lVZT6PN2MxcnftSRYXz0VDVxvpoMrNeLden6KhQi2DPdm8PvT7cT4ZP8ejl8Xk4GMWGEpHFVENeEKqJMIA1WKISTQUzGVdUgWUEG64pVRi05sbkjJiCt5TlPG1_gPTQ1TZ36d1bY8NKVmUwdrFQtXVNkJilGJOEM9rSyz907hpft9e1KmMkzQjHrepvlfEuBG8LufRlpfxaJiA3jcpNo3LfaLtwsYttdGXzPf-psAViC97LhV3_EycHd-PBb_g3Q_qBNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585378362</pqid></control><display><type>article</type><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</creator><creatorcontrib>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</creatorcontrib><description>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy.
The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007778</identifier><identifier>PMID: 34510563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Cancer ; Cancer therapies ; cancer therapy ; chemodynamic therapy ; Coordination compounds ; Humans ; Hyperthermia ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Organelles ; Peptides ; Phosphines ; Photochemotherapy - methods ; Photodynamic therapy ; photothermal therapy ; Radiation therapy ; Selectivity ; Side effects ; Toxicity</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2007778-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</citedby><cites>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</cites><orcidid>0000-0001-7004-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007778$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007778$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34510563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaolu</creatorcontrib><creatorcontrib>Yang, Naidi</creatorcontrib><creatorcontrib>Ji, Wenhui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhou, Zhiqiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Shen, Han‐Ming</creatorcontrib><creatorcontrib>Yao, Shao Q.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy.
The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</description><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>cancer therapy</subject><subject>chemodynamic therapy</subject><subject>Coordination compounds</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organelles</subject><subject>Peptides</subject><subject>Phosphines</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>photothermal therapy</subject><subject>Radiation therapy</subject><subject>Selectivity</subject><subject>Side effects</subject><subject>Toxicity</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAUBmALgWgprIwoEgtLyolvidlKuUqtWMps2Y7TpmriYjdC3XgEnpEnIVVLkViYLB1_59fRj9B5Av0EAF-rvFJ9DBggTdPsAHUThpOYgmCHqAuCsFhwmnXQSQhzABAc-DHqEMoSYJx0ER-XK_f18XnrKn0TTZSf2lVZT6PN2MxcnftSRYXz0VDVxvpoMrNeLden6KhQi2DPdm8PvT7cT4ZP8ejl8Xk4GMWGEpHFVENeEKqJMIA1WKISTQUzGVdUgWUEG64pVRi05sbkjJiCt5TlPG1_gPTQ1TZ36d1bY8NKVmUwdrFQtXVNkJilGJOEM9rSyz907hpft9e1KmMkzQjHrepvlfEuBG8LufRlpfxaJiA3jcpNo3LfaLtwsYttdGXzPf-psAViC97LhV3_EycHd-PBb_g3Q_qBNw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Guo, Xiaolu</creator><creator>Yang, Naidi</creator><creator>Ji, Wenhui</creator><creator>Zhang, Hang</creator><creator>Dong, Xiao</creator><creator>Zhou, Zhiqiang</creator><creator>Li, Lin</creator><creator>Shen, Han‐Ming</creator><creator>Yao, Shao Q.</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></search><sort><creationdate>20211001</creationdate><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><author>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>cancer therapy</topic><topic>chemodynamic therapy</topic><topic>Coordination compounds</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organelles</topic><topic>Peptides</topic><topic>Phosphines</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>photothermal therapy</topic><topic>Radiation therapy</topic><topic>Selectivity</topic><topic>Side effects</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaolu</creatorcontrib><creatorcontrib>Yang, Naidi</creatorcontrib><creatorcontrib>Ji, Wenhui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhou, Zhiqiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Shen, Han‐Ming</creatorcontrib><creatorcontrib>Yao, Shao Q.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaolu</au><au>Yang, Naidi</au><au>Ji, Wenhui</au><au>Zhang, Hang</au><au>Dong, Xiao</au><au>Zhou, Zhiqiang</au><au>Li, Lin</au><au>Shen, Han‐Ming</au><au>Yao, Shao Q.</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>43</issue><spage>e2007778</spage><epage>n/a</epage><pages>e2007778-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy.
The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34510563</pmid><doi>10.1002/adma.202007778</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2007778-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572231654 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Cancer Cancer therapies cancer therapy chemodynamic therapy Coordination compounds Humans Hyperthermia Mitochondria Mitochondria - drug effects Mitochondria - metabolism Neoplasms - drug therapy Neoplasms - metabolism Neoplasms - pathology Organelles Peptides Phosphines Photochemotherapy - methods Photodynamic therapy photothermal therapy Radiation therapy Selectivity Side effects Toxicity |
title | Mito‐Bomb: Targeting Mitochondria for Cancer Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mito%E2%80%90Bomb:%20Targeting%20Mitochondria%20for%20Cancer%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Xiaolu&rft.date=2021-10-01&rft.volume=33&rft.issue=43&rft.spage=e2007778&rft.epage=n/a&rft.pages=e2007778-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007778&rft_dat=%3Cproquest_cross%3E2572231654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585378362&rft_id=info:pmid/34510563&rfr_iscdi=true |