Mito‐Bomb: Targeting Mitochondria for Cancer Therapy

Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-10, Vol.33 (43), p.e2007778-n/a
Hauptverfasser: Guo, Xiaolu, Yang, Naidi, Ji, Wenhui, Zhang, Hang, Dong, Xiao, Zhou, Zhiqiang, Li, Lin, Shen, Han‐Ming, Yao, Shao Q., Huang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e2007778
container_title Advanced materials (Weinheim)
container_volume 33
creator Guo, Xiaolu
Yang, Naidi
Ji, Wenhui
Zhang, Hang
Dong, Xiao
Zhou, Zhiqiang
Li, Lin
Shen, Han‐Ming
Yao, Shao Q.
Huang, Wei
description Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy. The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.
doi_str_mv 10.1002/adma.202007778
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572231654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572231654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgWgprIwoEgtLyolvidlKuUqtWMps2Y7TpmriYjdC3XgEnpEnIVVLkViYLB1_59fRj9B5Av0EAF-rvFJ9DBggTdPsAHUThpOYgmCHqAuCsFhwmnXQSQhzABAc-DHqEMoSYJx0ER-XK_f18XnrKn0TTZSf2lVZT6PN2MxcnftSRYXz0VDVxvpoMrNeLden6KhQi2DPdm8PvT7cT4ZP8ejl8Xk4GMWGEpHFVENeEKqJMIA1WKISTQUzGVdUgWUEG64pVRi05sbkjJiCt5TlPG1_gPTQ1TZ36d1bY8NKVmUwdrFQtXVNkJilGJOEM9rSyz907hpft9e1KmMkzQjHrepvlfEuBG8LufRlpfxaJiA3jcpNo3LfaLtwsYttdGXzPf-psAViC97LhV3_EycHd-PBb_g3Q_qBNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585378362</pqid></control><display><type>article</type><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</creator><creatorcontrib>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</creatorcontrib><description>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy. The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202007778</identifier><identifier>PMID: 34510563</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Cancer ; Cancer therapies ; cancer therapy ; chemodynamic therapy ; Coordination compounds ; Humans ; Hyperthermia ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Neoplasms - pathology ; Organelles ; Peptides ; Phosphines ; Photochemotherapy - methods ; Photodynamic therapy ; photothermal therapy ; Radiation therapy ; Selectivity ; Side effects ; Toxicity</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2007778-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</citedby><cites>FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</cites><orcidid>0000-0001-7004-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202007778$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202007778$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34510563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Xiaolu</creatorcontrib><creatorcontrib>Yang, Naidi</creatorcontrib><creatorcontrib>Ji, Wenhui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhou, Zhiqiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Shen, Han‐Ming</creatorcontrib><creatorcontrib>Yao, Shao Q.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy. The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</description><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>cancer therapy</subject><subject>chemodynamic therapy</subject><subject>Coordination compounds</subject><subject>Humans</subject><subject>Hyperthermia</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Organelles</subject><subject>Peptides</subject><subject>Phosphines</subject><subject>Photochemotherapy - methods</subject><subject>Photodynamic therapy</subject><subject>photothermal therapy</subject><subject>Radiation therapy</subject><subject>Selectivity</subject><subject>Side effects</subject><subject>Toxicity</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAUBmALgWgprIwoEgtLyolvidlKuUqtWMps2Y7TpmriYjdC3XgEnpEnIVVLkViYLB1_59fRj9B5Av0EAF-rvFJ9DBggTdPsAHUThpOYgmCHqAuCsFhwmnXQSQhzABAc-DHqEMoSYJx0ER-XK_f18XnrKn0TTZSf2lVZT6PN2MxcnftSRYXz0VDVxvpoMrNeLden6KhQi2DPdm8PvT7cT4ZP8ejl8Xk4GMWGEpHFVENeEKqJMIA1WKISTQUzGVdUgWUEG64pVRi05sbkjJiCt5TlPG1_gPTQ1TZ36d1bY8NKVmUwdrFQtXVNkJilGJOEM9rSyz907hpft9e1KmMkzQjHrepvlfEuBG8LufRlpfxaJiA3jcpNo3LfaLtwsYttdGXzPf-psAViC97LhV3_EycHd-PBb_g3Q_qBNw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Guo, Xiaolu</creator><creator>Yang, Naidi</creator><creator>Ji, Wenhui</creator><creator>Zhang, Hang</creator><creator>Dong, Xiao</creator><creator>Zhou, Zhiqiang</creator><creator>Li, Lin</creator><creator>Shen, Han‐Ming</creator><creator>Yao, Shao Q.</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></search><sort><creationdate>20211001</creationdate><title>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</title><author>Guo, Xiaolu ; Yang, Naidi ; Ji, Wenhui ; Zhang, Hang ; Dong, Xiao ; Zhou, Zhiqiang ; Li, Lin ; Shen, Han‐Ming ; Yao, Shao Q. ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4398-4b0df34b39c02b0e3a1b495c86a4a0e532c6b44a20bb6ccd53cf6c025d67c6b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>cancer therapy</topic><topic>chemodynamic therapy</topic><topic>Coordination compounds</topic><topic>Humans</topic><topic>Hyperthermia</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Organelles</topic><topic>Peptides</topic><topic>Phosphines</topic><topic>Photochemotherapy - methods</topic><topic>Photodynamic therapy</topic><topic>photothermal therapy</topic><topic>Radiation therapy</topic><topic>Selectivity</topic><topic>Side effects</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xiaolu</creatorcontrib><creatorcontrib>Yang, Naidi</creatorcontrib><creatorcontrib>Ji, Wenhui</creatorcontrib><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Dong, Xiao</creatorcontrib><creatorcontrib>Zhou, Zhiqiang</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Shen, Han‐Ming</creatorcontrib><creatorcontrib>Yao, Shao Q.</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xiaolu</au><au>Yang, Naidi</au><au>Ji, Wenhui</au><au>Zhang, Hang</au><au>Dong, Xiao</au><au>Zhou, Zhiqiang</au><au>Li, Lin</au><au>Shen, Han‐Ming</au><au>Yao, Shao Q.</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mito‐Bomb: Targeting Mitochondria for Cancer Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>43</issue><spage>e2007778</spage><epage>n/a</epage><pages>e2007778-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Cancer has been one of the most common life‐threatening diseases for a long time. Traditional cancer therapies such as surgery, chemotherapy (CT), and radiotherapy (RT) have limited effects due to drug resistance, unsatisfactory treatment efficiency, and side effects. In recent years, photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT) have been utilized for cancer treatment owing to their high selectivity, minor resistance, and minimal toxicity. Accumulating evidence has demonstrated that selective delivery of drugs to specific subcellular organelles can significantly enhance the efficiency of cancer therapy. Mitochondria‐targeting therapeutic strategies are promising for cancer therapy, which is attributed to the essential role of mitochondria in the regulation of cancer cell apoptosis, metabolism, and more vulnerable to hyperthermia and oxidative damage. Herein, the rational design, functionalization, and applications of diverse mitochondria‐targeting units, involving organic phosphine/sulfur salts, quaternary ammonium (QA) salts, peptides, transition‐metal complexes, guanidinium or bisguanidinium, as well as mitochondria‐targeting cancer therapies including PDT, PTT, CDT, and others are summarized. This review aims to furnish researchers with deep insights and hints in the design and applications of novel mitochondria‐targeting agents for cancer therapy. The concept of “Mito‐Bomb Tumor Therapy” is proposed from an interdisciplinary perspective of “biology–chemistry–materials,” and the biological functions of mitochondria, mitochondria‐targeting functional units, and various cancer treatment strategies that target mitochondria, including but not limited to photothermal therapy, photodynamic therapy, and chemodynamic therapy are summarized in detail.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34510563</pmid><doi>10.1002/adma.202007778</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2007778-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2572231654
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Cancer
Cancer therapies
cancer therapy
chemodynamic therapy
Coordination compounds
Humans
Hyperthermia
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Neoplasms - drug therapy
Neoplasms - metabolism
Neoplasms - pathology
Organelles
Peptides
Phosphines
Photochemotherapy - methods
Photodynamic therapy
photothermal therapy
Radiation therapy
Selectivity
Side effects
Toxicity
title Mito‐Bomb: Targeting Mitochondria for Cancer Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A52%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mito%E2%80%90Bomb:%20Targeting%20Mitochondria%20for%20Cancer%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guo,%20Xiaolu&rft.date=2021-10-01&rft.volume=33&rft.issue=43&rft.spage=e2007778&rft.epage=n/a&rft.pages=e2007778-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202007778&rft_dat=%3Cproquest_cross%3E2572231654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585378362&rft_id=info:pmid/34510563&rfr_iscdi=true