Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors

Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high‐efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-10, Vol.33 (43), p.e2104370-n/a
Hauptverfasser: Wang, Zhiyong, Wang, Laiyuan, Wu, Yiming, Bian, Linyi, Nagai, Masaru, Jv, Ruolin, Xie, Linghai, Ling, Haifeng, Li, Qi, Bian, Hongyu, Yi, Mingdong, Shi, Naien, Liu, Xiaogang, Huang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 43
container_start_page e2104370
container_title Advanced materials (Weinheim)
container_volume 33
creator Wang, Zhiyong
Wang, Laiyuan
Wu, Yiming
Bian, Linyi
Nagai, Masaru
Jv, Ruolin
Xie, Linghai
Ling, Haifeng
Li, Qi
Bian, Hongyu
Yi, Mingdong
Shi, Naien
Liu, Xiaogang
Huang, Wei
description Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high‐efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport. Benefiting from the coordination‐assisted ionic diffusion, the device exhibits smooth, gradual conductive transitions. It is shown that the memristive characteristics of this hybrid system can be modulated by altering the metal center for desired metal–oxygen bonding energy and oxygen ions migration dynamics. The spike voltage‐dependent plasticity stemming from the local/extended movement of oxygen ions under low/high voltage is identified, which permits potentiation and depression under unipolar different positive voltages. As a proof‐of‐concept demonstration, memristive arrays are further built to emulate the signal filtering function of the biological visual system. This work demonstrates the ionic intelligence feature of metalloporphyrin and paves the way for implementing efficient neural‐signal analysis in neuromorphic hardware. A novel memristor based on a metalloporphyrin/oxide hybrid heterojunction is developed, in which the metalloporphyrin‐based intelligent semiconductors allow for dual electronic/ionic transport. The memristive devices exhibit unipolar plasticity, which can qualify the signal filtering function of the human visual system by programming different positive voltage spikes at fixed frequencies and time intervals.
doi_str_mv 10.1002/adma.202104370
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572220824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585377747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3500-9cad068db59975f5f3c31599fa1fea1b8ea4b5a2946d968a15a1f1f9843723de3</originalsourceid><addsrcrecordid>eNqFkMtKxEAQRRtRcHxsXQfcuMlY3Ukn6eWo4wMcFHxsQyWpjK09SezOINn5CX6jX2IPIwpuXFVBnXuhDmMHHMYcQBxjtcCxAMEhjlLYYCMuBQ9jUHKTjUBFMlRJnG2zHeeeAUAlkIzY_E7PGzTBuTY9Wd3Mg2mDhaEqKIbgrtMvFDy2psc5fb5_nFFHTUVNH9wadL0udT8Euglm1KMxbdfa7mnwJR49Qec7ZrSw2vWtdXtsq0bjaP977rKH8-n96WV4fXNxdTq5DstIAoSqxAqSrCqkUqmsZR2VEfd7jbwm5EVGGBcShYqTSiUZcukPvFaZf1lEFUW77Gjd29n2dUmuzxfalWQMNtQuXS5kKoSATMQePfyDPrdL62WsqExGaZrGqafGa6q0rXOW6ryzeoF2yDnkK-_5ynv-490H1Drwpg0N_9D55Gw2-c1-ATkuiXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585377747</pqid></control><display><type>article</type><title>Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors</title><source>Access via Wiley Online Library</source><creator>Wang, Zhiyong ; Wang, Laiyuan ; Wu, Yiming ; Bian, Linyi ; Nagai, Masaru ; Jv, Ruolin ; Xie, Linghai ; Ling, Haifeng ; Li, Qi ; Bian, Hongyu ; Yi, Mingdong ; Shi, Naien ; Liu, Xiaogang ; Huang, Wei</creator><creatorcontrib>Wang, Zhiyong ; Wang, Laiyuan ; Wu, Yiming ; Bian, Linyi ; Nagai, Masaru ; Jv, Ruolin ; Xie, Linghai ; Ling, Haifeng ; Li, Qi ; Bian, Hongyu ; Yi, Mingdong ; Shi, Naien ; Liu, Xiaogang ; Huang, Wei</creatorcontrib><description>Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high‐efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport. Benefiting from the coordination‐assisted ionic diffusion, the device exhibits smooth, gradual conductive transitions. It is shown that the memristive characteristics of this hybrid system can be modulated by altering the metal center for desired metal–oxygen bonding energy and oxygen ions migration dynamics. The spike voltage‐dependent plasticity stemming from the local/extended movement of oxygen ions under low/high voltage is identified, which permits potentiation and depression under unipolar different positive voltages. As a proof‐of‐concept demonstration, memristive arrays are further built to emulate the signal filtering function of the biological visual system. This work demonstrates the ionic intelligence feature of metalloporphyrin and paves the way for implementing efficient neural‐signal analysis in neuromorphic hardware. A novel memristor based on a metalloporphyrin/oxide hybrid heterojunction is developed, in which the metalloporphyrin‐based intelligent semiconductors allow for dual electronic/ionic transport. The memristive devices exhibit unipolar plasticity, which can qualify the signal filtering function of the human visual system by programming different positive voltage spikes at fixed frequencies and time intervals.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104370</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biological activity ; Data processing ; Electronic devices ; Filtration ; Heterojunctions ; Hybrid systems ; Ion diffusion ; Materials science ; Memristors ; metalloporphyrin/oxide memristor ; Neuromorphic computing ; Oxygen ions ; Plastic properties ; Probabilistic inference ; Signal analysis ; signal filtering ; spike voltage‐dependent plasticity ; Visual signals</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2104370-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3500-9cad068db59975f5f3c31599fa1fea1b8ea4b5a2946d968a15a1f1f9843723de3</citedby><cites>FETCH-LOGICAL-c3500-9cad068db59975f5f3c31599fa1fea1b8ea4b5a2946d968a15a1f1f9843723de3</cites><orcidid>0000-0001-6294-5833 ; 0000-0001-7004-6408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104370$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104370$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Wang, Laiyuan</creatorcontrib><creatorcontrib>Wu, Yiming</creatorcontrib><creatorcontrib>Bian, Linyi</creatorcontrib><creatorcontrib>Nagai, Masaru</creatorcontrib><creatorcontrib>Jv, Ruolin</creatorcontrib><creatorcontrib>Xie, Linghai</creatorcontrib><creatorcontrib>Ling, Haifeng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Bian, Hongyu</creatorcontrib><creatorcontrib>Yi, Mingdong</creatorcontrib><creatorcontrib>Shi, Naien</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors</title><title>Advanced materials (Weinheim)</title><description>Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high‐efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport. Benefiting from the coordination‐assisted ionic diffusion, the device exhibits smooth, gradual conductive transitions. It is shown that the memristive characteristics of this hybrid system can be modulated by altering the metal center for desired metal–oxygen bonding energy and oxygen ions migration dynamics. The spike voltage‐dependent plasticity stemming from the local/extended movement of oxygen ions under low/high voltage is identified, which permits potentiation and depression under unipolar different positive voltages. As a proof‐of‐concept demonstration, memristive arrays are further built to emulate the signal filtering function of the biological visual system. This work demonstrates the ionic intelligence feature of metalloporphyrin and paves the way for implementing efficient neural‐signal analysis in neuromorphic hardware. A novel memristor based on a metalloporphyrin/oxide hybrid heterojunction is developed, in which the metalloporphyrin‐based intelligent semiconductors allow for dual electronic/ionic transport. The memristive devices exhibit unipolar plasticity, which can qualify the signal filtering function of the human visual system by programming different positive voltage spikes at fixed frequencies and time intervals.</description><subject>Biological activity</subject><subject>Data processing</subject><subject>Electronic devices</subject><subject>Filtration</subject><subject>Heterojunctions</subject><subject>Hybrid systems</subject><subject>Ion diffusion</subject><subject>Materials science</subject><subject>Memristors</subject><subject>metalloporphyrin/oxide memristor</subject><subject>Neuromorphic computing</subject><subject>Oxygen ions</subject><subject>Plastic properties</subject><subject>Probabilistic inference</subject><subject>Signal analysis</subject><subject>signal filtering</subject><subject>spike voltage‐dependent plasticity</subject><subject>Visual signals</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxEAQRRtRcHxsXQfcuMlY3Ukn6eWo4wMcFHxsQyWpjK09SezOINn5CX6jX2IPIwpuXFVBnXuhDmMHHMYcQBxjtcCxAMEhjlLYYCMuBQ9jUHKTjUBFMlRJnG2zHeeeAUAlkIzY_E7PGzTBuTY9Wd3Mg2mDhaEqKIbgrtMvFDy2psc5fb5_nFFHTUVNH9wadL0udT8Euglm1KMxbdfa7mnwJR49Qec7ZrSw2vWtdXtsq0bjaP977rKH8-n96WV4fXNxdTq5DstIAoSqxAqSrCqkUqmsZR2VEfd7jbwm5EVGGBcShYqTSiUZcukPvFaZf1lEFUW77Gjd29n2dUmuzxfalWQMNtQuXS5kKoSATMQePfyDPrdL62WsqExGaZrGqafGa6q0rXOW6ryzeoF2yDnkK-_5ynv-490H1Drwpg0N_9D55Gw2-c1-ATkuiXM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wang, Zhiyong</creator><creator>Wang, Laiyuan</creator><creator>Wu, Yiming</creator><creator>Bian, Linyi</creator><creator>Nagai, Masaru</creator><creator>Jv, Ruolin</creator><creator>Xie, Linghai</creator><creator>Ling, Haifeng</creator><creator>Li, Qi</creator><creator>Bian, Hongyu</creator><creator>Yi, Mingdong</creator><creator>Shi, Naien</creator><creator>Liu, Xiaogang</creator><creator>Huang, Wei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6294-5833</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></search><sort><creationdate>20211001</creationdate><title>Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors</title><author>Wang, Zhiyong ; Wang, Laiyuan ; Wu, Yiming ; Bian, Linyi ; Nagai, Masaru ; Jv, Ruolin ; Xie, Linghai ; Ling, Haifeng ; Li, Qi ; Bian, Hongyu ; Yi, Mingdong ; Shi, Naien ; Liu, Xiaogang ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3500-9cad068db59975f5f3c31599fa1fea1b8ea4b5a2946d968a15a1f1f9843723de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological activity</topic><topic>Data processing</topic><topic>Electronic devices</topic><topic>Filtration</topic><topic>Heterojunctions</topic><topic>Hybrid systems</topic><topic>Ion diffusion</topic><topic>Materials science</topic><topic>Memristors</topic><topic>metalloporphyrin/oxide memristor</topic><topic>Neuromorphic computing</topic><topic>Oxygen ions</topic><topic>Plastic properties</topic><topic>Probabilistic inference</topic><topic>Signal analysis</topic><topic>signal filtering</topic><topic>spike voltage‐dependent plasticity</topic><topic>Visual signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiyong</creatorcontrib><creatorcontrib>Wang, Laiyuan</creatorcontrib><creatorcontrib>Wu, Yiming</creatorcontrib><creatorcontrib>Bian, Linyi</creatorcontrib><creatorcontrib>Nagai, Masaru</creatorcontrib><creatorcontrib>Jv, Ruolin</creatorcontrib><creatorcontrib>Xie, Linghai</creatorcontrib><creatorcontrib>Ling, Haifeng</creatorcontrib><creatorcontrib>Li, Qi</creatorcontrib><creatorcontrib>Bian, Hongyu</creatorcontrib><creatorcontrib>Yi, Mingdong</creatorcontrib><creatorcontrib>Shi, Naien</creatorcontrib><creatorcontrib>Liu, Xiaogang</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiyong</au><au>Wang, Laiyuan</au><au>Wu, Yiming</au><au>Bian, Linyi</au><au>Nagai, Masaru</au><au>Jv, Ruolin</au><au>Xie, Linghai</au><au>Ling, Haifeng</au><au>Li, Qi</au><au>Bian, Hongyu</au><au>Yi, Mingdong</au><au>Shi, Naien</au><au>Liu, Xiaogang</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>43</issue><spage>e2104370</spage><epage>n/a</epage><pages>e2104370-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Neural systems can selectively filter and memorize spatiotemporal information, thus enabling high‐efficient information processing. Emulating such an exquisite biological process in electronic devices is of fundamental importance for developing neuromorphic architectures with efficient in situ edge/parallel computing, and probabilistic inference. Here a novel multifunctional memristor is proposed and demonstrated based on metalloporphyrin/oxide hybrid heterojunction, in which the metalloporphyrin layer allows for dual electronic/ionic transport. Benefiting from the coordination‐assisted ionic diffusion, the device exhibits smooth, gradual conductive transitions. It is shown that the memristive characteristics of this hybrid system can be modulated by altering the metal center for desired metal–oxygen bonding energy and oxygen ions migration dynamics. The spike voltage‐dependent plasticity stemming from the local/extended movement of oxygen ions under low/high voltage is identified, which permits potentiation and depression under unipolar different positive voltages. As a proof‐of‐concept demonstration, memristive arrays are further built to emulate the signal filtering function of the biological visual system. This work demonstrates the ionic intelligence feature of metalloporphyrin and paves the way for implementing efficient neural‐signal analysis in neuromorphic hardware. A novel memristor based on a metalloporphyrin/oxide hybrid heterojunction is developed, in which the metalloporphyrin‐based intelligent semiconductors allow for dual electronic/ionic transport. The memristive devices exhibit unipolar plasticity, which can qualify the signal filtering function of the human visual system by programming different positive voltage spikes at fixed frequencies and time intervals.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202104370</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6294-5833</orcidid><orcidid>https://orcid.org/0000-0001-7004-6408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-10, Vol.33 (43), p.e2104370-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2572220824
source Access via Wiley Online Library
subjects Biological activity
Data processing
Electronic devices
Filtration
Heterojunctions
Hybrid systems
Ion diffusion
Materials science
Memristors
metalloporphyrin/oxide memristor
Neuromorphic computing
Oxygen ions
Plastic properties
Probabilistic inference
Signal analysis
signal filtering
spike voltage‐dependent plasticity
Visual signals
title Signal Filtering Enabled by Spike Voltage‐Dependent Plasticity in Metalloporphyrin‐Based Memristors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signal%20Filtering%20Enabled%20by%20Spike%20Voltage%E2%80%90Dependent%20Plasticity%20in%20Metalloporphyrin%E2%80%90Based%20Memristors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wang,%20Zhiyong&rft.date=2021-10-01&rft.volume=33&rft.issue=43&rft.spage=e2104370&rft.epage=n/a&rft.pages=e2104370-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104370&rft_dat=%3Cproquest_cross%3E2585377747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585377747&rft_id=info:pmid/&rfr_iscdi=true