Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications

Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (37), p.43831-43854
Hauptverfasser: Peng, Shuhua, Yu, Yuyan, Wu, Shuying, Wang, Chun-Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43854
container_issue 37
container_start_page 43831
container_title ACS applied materials & interfaces
container_volume 13
creator Peng, Shuhua
Yu, Yuyan
Wu, Shuying
Wang, Chun-Hui
description Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.
doi_str_mv 10.1021/acsami.1c15014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572214724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572214724</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhCMEEqVw5ewjQqTYjh0n3KpSHlJ5SIWztXU24JLEwU6Q-u9JVcQNcZrV7DcrrSaKThmdMMrZJZgAtZ0wwyRlYi8asVyIOOOS7__OQhxGRyGsKU0TTuUo-pi5puhNZ7-QPLtqU6Mnj9A44-rWBdthIKXzZNl57Mw7rCok8wpN511jTbgiD9Cht1CRJW5t65oLco3Bvg0KTUGmbVtZA9tFOI4OSqgCnvzoOHq9mb_M7uLF0-39bLqIIRG0i3mhFBg0GVLDmMw4yKLgGXJcMRAMASRyQzPJ0twUOU04lqUSSqVJyVLMk3F0trvbevfZY-h0bYPBqoIGXR80T5M0yWWu5P-oVJwzobgY0MkONd6F4LHUrbc1-I1mVG8L0LsC9E8BQ-B8Fxh8vXa9b4an_4K_AcQfiWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572214724</pqid></control><display><type>article</type><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><source>ACS Publications</source><creator>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</creator><creatorcontrib>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</creatorcontrib><description>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c15014</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>COVID-19 infection ; electrical conductivity ; electronics ; hybridization ; mechanical stress ; microstructure ; polymer nanocomposites</subject><ispartof>ACS applied materials &amp; interfaces, 2021-09, Vol.13 (37), p.43831-43854</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</citedby><cites>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</cites><orcidid>0000-0001-5299-5642 ; 0000-0001-5680-9448 ; 0000-0001-6081-1487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c15014$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c15014$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Peng, Shuhua</creatorcontrib><creatorcontrib>Yu, Yuyan</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</description><subject>COVID-19 infection</subject><subject>electrical conductivity</subject><subject>electronics</subject><subject>hybridization</subject><subject>mechanical stress</subject><subject>microstructure</subject><subject>polymer nanocomposites</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhCMEEqVw5ewjQqTYjh0n3KpSHlJ5SIWztXU24JLEwU6Q-u9JVcQNcZrV7DcrrSaKThmdMMrZJZgAtZ0wwyRlYi8asVyIOOOS7__OQhxGRyGsKU0TTuUo-pi5puhNZ7-QPLtqU6Mnj9A44-rWBdthIKXzZNl57Mw7rCok8wpN511jTbgiD9Cht1CRJW5t65oLco3Bvg0KTUGmbVtZA9tFOI4OSqgCnvzoOHq9mb_M7uLF0-39bLqIIRG0i3mhFBg0GVLDmMw4yKLgGXJcMRAMASRyQzPJ0twUOU04lqUSSqVJyVLMk3F0trvbevfZY-h0bYPBqoIGXR80T5M0yWWu5P-oVJwzobgY0MkONd6F4LHUrbc1-I1mVG8L0LsC9E8BQ-B8Fxh8vXa9b4an_4K_AcQfiWI</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Peng, Shuhua</creator><creator>Yu, Yuyan</creator><creator>Wu, Shuying</creator><creator>Wang, Chun-Hui</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5299-5642</orcidid><orcidid>https://orcid.org/0000-0001-5680-9448</orcidid><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid></search><sort><creationdate>20210922</creationdate><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><author>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>COVID-19 infection</topic><topic>electrical conductivity</topic><topic>electronics</topic><topic>hybridization</topic><topic>mechanical stress</topic><topic>microstructure</topic><topic>polymer nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Shuhua</creatorcontrib><creatorcontrib>Yu, Yuyan</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Shuhua</au><au>Yu, Yuyan</au><au>Wu, Shuying</au><au>Wang, Chun-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>13</volume><issue>37</issue><spage>43831</spage><epage>43854</epage><pages>43831-43854</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c15014</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5299-5642</orcidid><orcidid>https://orcid.org/0000-0001-5680-9448</orcidid><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-09, Vol.13 (37), p.43831-43854
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2572214724
source ACS Publications
subjects COVID-19 infection
electrical conductivity
electronics
hybridization
mechanical stress
microstructure
polymer nanocomposites
title Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20Polymer%20Nanocomposites%20for%20Stretchable%20Electronics:%20Material%20Selection,%20Design,%20and%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Peng,%20Shuhua&rft.date=2021-09-22&rft.volume=13&rft.issue=37&rft.spage=43831&rft.epage=43854&rft.pages=43831-43854&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c15014&rft_dat=%3Cproquest_cross%3E2572214724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572214724&rft_id=info:pmid/&rfr_iscdi=true