Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications
Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-09, Vol.13 (37), p.43831-43854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43854 |
---|---|
container_issue | 37 |
container_start_page | 43831 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Peng, Shuhua Yu, Yuyan Wu, Shuying Wang, Chun-Hui |
description | Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed. |
doi_str_mv | 10.1021/acsami.1c15014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572214724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572214724</sourcerecordid><originalsourceid>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</originalsourceid><addsrcrecordid>eNqFkUtPwzAQhCMEEqVw5ewjQqTYjh0n3KpSHlJ5SIWztXU24JLEwU6Q-u9JVcQNcZrV7DcrrSaKThmdMMrZJZgAtZ0wwyRlYi8asVyIOOOS7__OQhxGRyGsKU0TTuUo-pi5puhNZ7-QPLtqU6Mnj9A44-rWBdthIKXzZNl57Mw7rCok8wpN511jTbgiD9Cht1CRJW5t65oLco3Bvg0KTUGmbVtZA9tFOI4OSqgCnvzoOHq9mb_M7uLF0-39bLqIIRG0i3mhFBg0GVLDmMw4yKLgGXJcMRAMASRyQzPJ0twUOU04lqUSSqVJyVLMk3F0trvbevfZY-h0bYPBqoIGXR80T5M0yWWu5P-oVJwzobgY0MkONd6F4LHUrbc1-I1mVG8L0LsC9E8BQ-B8Fxh8vXa9b4an_4K_AcQfiWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572214724</pqid></control><display><type>article</type><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><source>ACS Publications</source><creator>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</creator><creatorcontrib>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</creatorcontrib><description>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c15014</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>COVID-19 infection ; electrical conductivity ; electronics ; hybridization ; mechanical stress ; microstructure ; polymer nanocomposites</subject><ispartof>ACS applied materials & interfaces, 2021-09, Vol.13 (37), p.43831-43854</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</citedby><cites>FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</cites><orcidid>0000-0001-5299-5642 ; 0000-0001-5680-9448 ; 0000-0001-6081-1487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c15014$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c15014$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Peng, Shuhua</creatorcontrib><creatorcontrib>Yu, Yuyan</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</description><subject>COVID-19 infection</subject><subject>electrical conductivity</subject><subject>electronics</subject><subject>hybridization</subject><subject>mechanical stress</subject><subject>microstructure</subject><subject>polymer nanocomposites</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkUtPwzAQhCMEEqVw5ewjQqTYjh0n3KpSHlJ5SIWztXU24JLEwU6Q-u9JVcQNcZrV7DcrrSaKThmdMMrZJZgAtZ0wwyRlYi8asVyIOOOS7__OQhxGRyGsKU0TTuUo-pi5puhNZ7-QPLtqU6Mnj9A44-rWBdthIKXzZNl57Mw7rCok8wpN511jTbgiD9Cht1CRJW5t65oLco3Bvg0KTUGmbVtZA9tFOI4OSqgCnvzoOHq9mb_M7uLF0-39bLqIIRG0i3mhFBg0GVLDmMw4yKLgGXJcMRAMASRyQzPJ0twUOU04lqUSSqVJyVLMk3F0trvbevfZY-h0bYPBqoIGXR80T5M0yWWu5P-oVJwzobgY0MkONd6F4LHUrbc1-I1mVG8L0LsC9E8BQ-B8Fxh8vXa9b4an_4K_AcQfiWI</recordid><startdate>20210922</startdate><enddate>20210922</enddate><creator>Peng, Shuhua</creator><creator>Yu, Yuyan</creator><creator>Wu, Shuying</creator><creator>Wang, Chun-Hui</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-5299-5642</orcidid><orcidid>https://orcid.org/0000-0001-5680-9448</orcidid><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid></search><sort><creationdate>20210922</creationdate><title>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</title><author>Peng, Shuhua ; Yu, Yuyan ; Wu, Shuying ; Wang, Chun-Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a340t-2d77acec8e0c11582a5dd28e2eb1a41eaa5e2c085169cd9032eff747763f16e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>COVID-19 infection</topic><topic>electrical conductivity</topic><topic>electronics</topic><topic>hybridization</topic><topic>mechanical stress</topic><topic>microstructure</topic><topic>polymer nanocomposites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Shuhua</creatorcontrib><creatorcontrib>Yu, Yuyan</creatorcontrib><creatorcontrib>Wu, Shuying</creatorcontrib><creatorcontrib>Wang, Chun-Hui</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Shuhua</au><au>Yu, Yuyan</au><au>Wu, Shuying</au><au>Wang, Chun-Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-09-22</date><risdate>2021</risdate><volume>13</volume><issue>37</issue><spage>43831</spage><epage>43854</epage><pages>43831-43854</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Stretchable electronics that can elongate elastically as well as flex are crucial to a wide range of emerging technologies, such as wearable medical devices, electronic skin, and soft robotics. Critical to stretchable electronics is their ability to withstand large mechanical strain without failure while retaining their electrical conduction properties, a feat significantly beyond traditional metals and silicon-based semiconductors. Herein, we present a review of the recent advances in stretchable conductive polymer nanocomposites with exceptional stretchability and electrical properties, which have the potential to transform a wide range of applications, including wearable sensors for biophysical signals, stretchable conductors and electrodes, and deformable energy-harvesting and -storage devices. Critical to achieving these stretching properties are the judicious selection and hybridization of nanomaterials, novel microstructure designs, and facile fabrication processes, which are the focus of this Review. To highlight the potentials of conductive nanocomposites, a summary of some recent important applications is presented, including COVID-19 remote monitoring, connected health, electronic skin for augmented intelligence, and soft robotics. Finally, perspectives on future challenges and new research opportunities are also presented and discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c15014</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-5299-5642</orcidid><orcidid>https://orcid.org/0000-0001-5680-9448</orcidid><orcidid>https://orcid.org/0000-0001-6081-1487</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-09, Vol.13 (37), p.43831-43854 |
issn | 1944-8244 1944-8252 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572214724 |
source | ACS Publications |
subjects | COVID-19 infection electrical conductivity electronics hybridization mechanical stress microstructure polymer nanocomposites |
title | Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20Polymer%20Nanocomposites%20for%20Stretchable%20Electronics:%20Material%20Selection,%20Design,%20and%20Applications&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Peng,%20Shuhua&rft.date=2021-09-22&rft.volume=13&rft.issue=37&rft.spage=43831&rft.epage=43854&rft.pages=43831-43854&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c15014&rft_dat=%3Cproquest_cross%3E2572214724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572214724&rft_id=info:pmid/&rfr_iscdi=true |