Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway
Overactivation of TGF‐β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF‐β/ALK5/Smad signaling pathway transduction, TGF‐β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatme...
Gespeichert in:
Veröffentlicht in: | Phytotherapy research 2021-11, Vol.35 (11), p.6310-6323 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6323 |
---|---|
container_issue | 11 |
container_start_page | 6310 |
container_title | Phytotherapy research |
container_volume | 35 |
creator | Zhang, Zihao Qiao, Yu Yang, Li Chen, Zuwang Li, Tao Gu, MingZhen Li, Chong Liu, Mingming Li, Rong |
description | Overactivation of TGF‐β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF‐β/ALK5/Smad signaling pathway transduction, TGF‐β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking‐based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3‐O‐gentiobioside (KPF 3‐O‐G) was identified as a potent ALK5 inhibitor through directly bound to the ATP‐site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3‐O‐G reduced cell proliferation and inhibited TGF‐β‐induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3‐O‐G significantly reversed the TGF‐β‐induced EMT biomarkers, including upregulation of E‐cadherin and downregulation of N‐cadherin, vimentin, and snail. In vivo study showed that KPF 3‐O‐G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF‐3‐O‐G and indicated that KPF‐3‐O‐G might be developed as potential therapeutics for cancer treatment after further validation. |
doi_str_mv | 10.1002/ptr.7278 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572211288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572211288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3498-3384d2008c6b170c6c5f22692a700676a22f96f0c9c823586fa690ba24d37cf03</originalsourceid><addsrcrecordid>eNp1kd1qFDEYhoNY7FoFr0ACnnjQ6X7JzOTnsBRbSxcquoJnQyaT7KbOTMZkpmXPegm9E6EX4kV4Jc32R0EwEPL3vO_3hRehNwQOCACdD2M44JSLZ2hGQMqMlDx_jmYgS5IVRHzbRS9jvAAASaF4gXbzoiQFK_kM_TxTphusCb7F-e_rm_M0V6Yfna-dj64x-1j1-HBxVmLXr13tRh_SlbVGjxGPa4OHJHXJQCVNv487t3raqr5JoksV0wl7i8ep8wFr07YRXzqF69br76ox92_JaXlynKr_up1vy82_dKrB0a161bp-hQc1rq_U5hXasaqN5vXjuoe-Hn9YHn3MFucnp0eHi0znhRRZnouioQBCs5pw0EyXllImqeIAjDNFqZXMgpZa0LwUzComoVa0aHKuLeR76P2Db_rej8nEsepc3LaueuOnWNGSU0oIFSKh7_5BL_wUUtuJYkDSoAX_a6iDjzEYWw3BdSpsKgLVNsQqhVhtQ0zo20fDqe5M8wd8Si0B2QNw5Vqz-a9R9Wn5-d7wDpmPqQs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601111247</pqid></control><display><type>article</type><title>Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Zihao ; Qiao, Yu ; Yang, Li ; Chen, Zuwang ; Li, Tao ; Gu, MingZhen ; Li, Chong ; Liu, Mingming ; Li, Rong</creator><creatorcontrib>Zhang, Zihao ; Qiao, Yu ; Yang, Li ; Chen, Zuwang ; Li, Tao ; Gu, MingZhen ; Li, Chong ; Liu, Mingming ; Li, Rong</creatorcontrib><description>Overactivation of TGF‐β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF‐β/ALK5/Smad signaling pathway transduction, TGF‐β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking‐based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3‐O‐gentiobioside (KPF 3‐O‐G) was identified as a potent ALK5 inhibitor through directly bound to the ATP‐site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3‐O‐G reduced cell proliferation and inhibited TGF‐β‐induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3‐O‐G significantly reversed the TGF‐β‐induced EMT biomarkers, including upregulation of E‐cadherin and downregulation of N‐cadherin, vimentin, and snail. In vivo study showed that KPF 3‐O‐G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF‐3‐O‐G and indicated that KPF‐3‐O‐G might be developed as potential therapeutics for cancer treatment after further validation.</description><identifier>ISSN: 0951-418X</identifier><identifier>EISSN: 1099-1573</identifier><identifier>DOI: 10.1002/ptr.7278</identifier><identifier>PMID: 34514657</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Anticancer properties ; Antineoplastic Agents, Phytogenic ; Biocompatibility ; Biomarkers ; cancer ; Cancer therapies ; Cell Line, Tumor ; Cell migration ; Cell Movement ; Cell Proliferation ; Chinese medicine monomer ; Epithelial-Mesenchymal Transition ; Flavone glycosides ; Flavonoids ; In vivo methods and tests ; Inhibitors ; Kaempferol ; kaempferol 3‐O‐gentiobioside ; Kaempferols ; Mice ; Natural products ; Ovarian cancer ; Phosphorylation ; Receptor, Transforming Growth Factor-beta Type I - antagonists & inhibitors ; Signal Transduction ; Signaling ; Smad protein ; Smad Proteins ; Smad2 protein ; Smad4 protein ; Therapeutic targets ; Transforming Growth Factor beta ; Transforming growth factor-b ; transforming growth factor‐β ; Translocation ; Tumor cells ; Tumors ; Vimentin ; Western blotting ; Xenografts ; Xenotransplantation</subject><ispartof>Phytotherapy research, 2021-11, Vol.35 (11), p.6310-6323</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3498-3384d2008c6b170c6c5f22692a700676a22f96f0c9c823586fa690ba24d37cf03</citedby><cites>FETCH-LOGICAL-c3498-3384d2008c6b170c6c5f22692a700676a22f96f0c9c823586fa690ba24d37cf03</cites><orcidid>0000-0002-4672-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fptr.7278$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fptr.7278$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34514657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Zuwang</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Gu, MingZhen</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><creatorcontrib>Liu, Mingming</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><title>Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway</title><title>Phytotherapy research</title><addtitle>Phytother Res</addtitle><description>Overactivation of TGF‐β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF‐β/ALK5/Smad signaling pathway transduction, TGF‐β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking‐based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3‐O‐gentiobioside (KPF 3‐O‐G) was identified as a potent ALK5 inhibitor through directly bound to the ATP‐site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3‐O‐G reduced cell proliferation and inhibited TGF‐β‐induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3‐O‐G significantly reversed the TGF‐β‐induced EMT biomarkers, including upregulation of E‐cadherin and downregulation of N‐cadherin, vimentin, and snail. In vivo study showed that KPF 3‐O‐G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF‐3‐O‐G and indicated that KPF‐3‐O‐G might be developed as potential therapeutics for cancer treatment after further validation.</description><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents, Phytogenic</subject><subject>Biocompatibility</subject><subject>Biomarkers</subject><subject>cancer</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>Chinese medicine monomer</subject><subject>Epithelial-Mesenchymal Transition</subject><subject>Flavone glycosides</subject><subject>Flavonoids</subject><subject>In vivo methods and tests</subject><subject>Inhibitors</subject><subject>Kaempferol</subject><subject>kaempferol 3‐O‐gentiobioside</subject><subject>Kaempferols</subject><subject>Mice</subject><subject>Natural products</subject><subject>Ovarian cancer</subject><subject>Phosphorylation</subject><subject>Receptor, Transforming Growth Factor-beta Type I - antagonists & inhibitors</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Smad protein</subject><subject>Smad Proteins</subject><subject>Smad2 protein</subject><subject>Smad4 protein</subject><subject>Therapeutic targets</subject><subject>Transforming Growth Factor beta</subject><subject>Transforming growth factor-b</subject><subject>transforming growth factor‐β</subject><subject>Translocation</subject><subject>Tumor cells</subject><subject>Tumors</subject><subject>Vimentin</subject><subject>Western blotting</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>0951-418X</issn><issn>1099-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1qFDEYhoNY7FoFr0ACnnjQ6X7JzOTnsBRbSxcquoJnQyaT7KbOTMZkpmXPegm9E6EX4kV4Jc32R0EwEPL3vO_3hRehNwQOCACdD2M44JSLZ2hGQMqMlDx_jmYgS5IVRHzbRS9jvAAASaF4gXbzoiQFK_kM_TxTphusCb7F-e_rm_M0V6Yfna-dj64x-1j1-HBxVmLXr13tRh_SlbVGjxGPa4OHJHXJQCVNv487t3raqr5JoksV0wl7i8ep8wFr07YRXzqF69br76ox92_JaXlynKr_up1vy82_dKrB0a161bp-hQc1rq_U5hXasaqN5vXjuoe-Hn9YHn3MFucnp0eHi0znhRRZnouioQBCs5pw0EyXllImqeIAjDNFqZXMgpZa0LwUzComoVa0aHKuLeR76P2Db_rej8nEsepc3LaueuOnWNGSU0oIFSKh7_5BL_wUUtuJYkDSoAX_a6iDjzEYWw3BdSpsKgLVNsQqhVhtQ0zo20fDqe5M8wd8Si0B2QNw5Vqz-a9R9Wn5-d7wDpmPqQs</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhang, Zihao</creator><creator>Qiao, Yu</creator><creator>Yang, Li</creator><creator>Chen, Zuwang</creator><creator>Li, Tao</creator><creator>Gu, MingZhen</creator><creator>Li, Chong</creator><creator>Liu, Mingming</creator><creator>Li, Rong</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4672-7868</orcidid></search><sort><creationdate>202111</creationdate><title>Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway</title><author>Zhang, Zihao ; Qiao, Yu ; Yang, Li ; Chen, Zuwang ; Li, Tao ; Gu, MingZhen ; Li, Chong ; Liu, Mingming ; Li, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3498-3384d2008c6b170c6c5f22692a700676a22f96f0c9c823586fa690ba24d37cf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents, Phytogenic</topic><topic>Biocompatibility</topic><topic>Biomarkers</topic><topic>cancer</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>Chinese medicine monomer</topic><topic>Epithelial-Mesenchymal Transition</topic><topic>Flavone glycosides</topic><topic>Flavonoids</topic><topic>In vivo methods and tests</topic><topic>Inhibitors</topic><topic>Kaempferol</topic><topic>kaempferol 3‐O‐gentiobioside</topic><topic>Kaempferols</topic><topic>Mice</topic><topic>Natural products</topic><topic>Ovarian cancer</topic><topic>Phosphorylation</topic><topic>Receptor, Transforming Growth Factor-beta Type I - antagonists & inhibitors</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Smad protein</topic><topic>Smad Proteins</topic><topic>Smad2 protein</topic><topic>Smad4 protein</topic><topic>Therapeutic targets</topic><topic>Transforming Growth Factor beta</topic><topic>Transforming growth factor-b</topic><topic>transforming growth factor‐β</topic><topic>Translocation</topic><topic>Tumor cells</topic><topic>Tumors</topic><topic>Vimentin</topic><topic>Western blotting</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zihao</creatorcontrib><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Zuwang</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Gu, MingZhen</creatorcontrib><creatorcontrib>Li, Chong</creatorcontrib><creatorcontrib>Liu, Mingming</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Phytotherapy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zihao</au><au>Qiao, Yu</au><au>Yang, Li</au><au>Chen, Zuwang</au><au>Li, Tao</au><au>Gu, MingZhen</au><au>Li, Chong</au><au>Liu, Mingming</au><au>Li, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway</atitle><jtitle>Phytotherapy research</jtitle><addtitle>Phytother Res</addtitle><date>2021-11</date><risdate>2021</risdate><volume>35</volume><issue>11</issue><spage>6310</spage><epage>6323</epage><pages>6310-6323</pages><issn>0951-418X</issn><eissn>1099-1573</eissn><abstract>Overactivation of TGF‐β/ALK5/Smad signaling pathway has been observed in the advanced stage of various human malignancies. As a key component of TGF‐β/ALK5/Smad signaling pathway transduction, TGF‐β type I receptor (also known as ALK5) has emerged as a promising therapeutic target for cancer treatment. In this study, to discover a novel ALK5 inhibitor, a commercial natural products library was screened using docking‐based virtual screening, followed by luciferase reporter assay. A flavonoid glycoside kaempferol 3‐O‐gentiobioside (KPF 3‐O‐G) was identified as a potent ALK5 inhibitor through directly bound to the ATP‐site of ALK5, resulting in the inhibitory effects on phosphorylation and translocation of Smad2 and expression of Smad4. Additionally, we found that KPF 3‐O‐G reduced cell proliferation and inhibited TGF‐β‐induced cell migration and invasion. Moreover, western blotting and immunofluorescent analysis showed that KPF 3‐O‐G significantly reversed the TGF‐β‐induced EMT biomarkers, including upregulation of E‐cadherin and downregulation of N‐cadherin, vimentin, and snail. In vivo study showed that KPF 3‐O‐G administration reduced tumor growth in human ovarian cancer xenograft mouse model, without obvious toxic effect. This study provided novel insight into the anticancer effects of KPF‐3‐O‐G and indicated that KPF‐3‐O‐G might be developed as potential therapeutics for cancer treatment after further validation.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>34514657</pmid><doi>10.1002/ptr.7278</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4672-7868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-418X |
ispartof | Phytotherapy research, 2021-11, Vol.35 (11), p.6310-6323 |
issn | 0951-418X 1099-1573 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572211288 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Anticancer properties Antineoplastic Agents, Phytogenic Biocompatibility Biomarkers cancer Cancer therapies Cell Line, Tumor Cell migration Cell Movement Cell Proliferation Chinese medicine monomer Epithelial-Mesenchymal Transition Flavone glycosides Flavonoids In vivo methods and tests Inhibitors Kaempferol kaempferol 3‐O‐gentiobioside Kaempferols Mice Natural products Ovarian cancer Phosphorylation Receptor, Transforming Growth Factor-beta Type I - antagonists & inhibitors Signal Transduction Signaling Smad protein Smad Proteins Smad2 protein Smad4 protein Therapeutic targets Transforming Growth Factor beta Transforming growth factor-b transforming growth factor‐β Translocation Tumor cells Tumors Vimentin Western blotting Xenografts Xenotransplantation |
title | Kaempferol 3‐O‐gentiobioside, an ALK5 inhibitor, affects the proliferation, migration, and invasion of tumor cells via blockade of the TGF‐β/ALK5/Smad signaling pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kaempferol%203%E2%80%90O%E2%80%90gentiobioside,%20an%20ALK5%20inhibitor,%20affects%20the%20proliferation,%20migration,%20and%20invasion%20of%20tumor%20cells%20via%20blockade%20of%20the%20TGF%E2%80%90%CE%B2/ALK5/Smad%20signaling%20pathway&rft.jtitle=Phytotherapy%20research&rft.au=Zhang,%20Zihao&rft.date=2021-11&rft.volume=35&rft.issue=11&rft.spage=6310&rft.epage=6323&rft.pages=6310-6323&rft.issn=0951-418X&rft.eissn=1099-1573&rft_id=info:doi/10.1002/ptr.7278&rft_dat=%3Cproquest_cross%3E2572211288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601111247&rft_id=info:pmid/34514657&rfr_iscdi=true |