Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes
•1) Waste Si wafer is a promising anode material for LIBs.•2) Alloying/dealloying approach takes advantage of the volume expansion.•3) Molten salt avoids the formation of SEI during the alloying process.•4) The lithium salt and Sn in alloy/dealloying process can be reused.•5) The obtained Si deliver...
Gespeichert in:
Veröffentlicht in: | Waste management (Elmsford) 2021-11, Vol.135, p.182-189 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | |
container_start_page | 182 |
container_title | Waste management (Elmsford) |
container_volume | 135 |
creator | Zhang, Chaofan Ma, Qiang Cai, Muya Zhao, Zhuqing Xie, Hongwei Ning, Zhiqiang Wang, Dihua Yin, Huayi |
description | •1) Waste Si wafer is a promising anode material for LIBs.•2) Alloying/dealloying approach takes advantage of the volume expansion.•3) Molten salt avoids the formation of SEI during the alloying process.•4) The lithium salt and Sn in alloy/dealloying process can be reused.•5) The obtained Si delivers 2427.7 mAh g−1 at 1 A g−1 after 200 cycles.
A low-cost and easy-available silicon (Si) feedstock is of great significance for developing high-performance lithium-ion battery (LIB) anode materials. Herein, we employ waste crystalline Si solar panels as silicon raw materials, and transform micro-sized Si (m-Si) into porous Si (p-Si) by an alloying/dealloying approach in molten salt where Li+ was first reduced and simultaneously alloyed with m-Si to generate Li-Si alloy at the cathode. Subsequently, the as-prepared Li-Si alloy served as the anode in the same molten salt to release Li+ into the molten salt, resulting in the production of p-Si by taking advantage of the volume expansion/contraction effect. In the whole process, Li+ was shuttled between the electrodes in molten LiCl-KCl, without consuming Li salt. The obtained p-Si was applied as an anode in a half-type LIBs that delivered a capacity of 2427.7 mAh g−1 at 1 A g−1 after 200 cycles with a capacity retention rate of 91.5% (1383.3 mAh g−1 after 500 cycles). Overall, this work offers a straightforward way to convent waste Si panels to high-performance Si anodes for LIBs, giving retired Si a second life and alleviating greenhouse gas emissions caused by Si production. |
doi_str_mv | 10.1016/j.wasman.2021.08.037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2572210752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956053X21004803</els_id><sourcerecordid>2572210752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b2f643821d3b16869b8e7314d303e41777fb099fe7cd06345e9e00e1d302f4d23</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJoZtN_kEOOuZidyTZln0JlCVJC4FCaaA3IcujrhbZciXvhv33ldnQY08zMG_evPkIuWNQMmDN50P5ptOop5IDZyW0JQj5gWxYK7uCV3VzRTbQ1U0Btfj1iVyndABgVctgQ04_0IQTxjMNls4hhmOiyXlnwkRtDCPNzgtSE89p0d67Cf-NU_A60llP6BO1IdK9-70vZoy5z2EMUu-WvTuOhcvqXi_LekZPYcB0Qz5a7RPevtcteX16_Ln7Wrx8f_62-_JSGCG6pei5bSrRcjaInjVt0_UtSsGqQYDAikkpbQ9dZ1GaARpR1dghAGY5cFsNXGzJ_cV3juHPEdOiRpcMep9T51cVryXnDGS9SquL1MSQUkSr5uhGHc-KgVoxq4O6YFYrZgWtypjz2sNlLVPAk8OoknGYvx9cRLOoIbj_G_wFTQaKgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572210752</pqid></control><display><type>article</type><title>Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zhang, Chaofan ; Ma, Qiang ; Cai, Muya ; Zhao, Zhuqing ; Xie, Hongwei ; Ning, Zhiqiang ; Wang, Dihua ; Yin, Huayi</creator><creatorcontrib>Zhang, Chaofan ; Ma, Qiang ; Cai, Muya ; Zhao, Zhuqing ; Xie, Hongwei ; Ning, Zhiqiang ; Wang, Dihua ; Yin, Huayi</creatorcontrib><description>•1) Waste Si wafer is a promising anode material for LIBs.•2) Alloying/dealloying approach takes advantage of the volume expansion.•3) Molten salt avoids the formation of SEI during the alloying process.•4) The lithium salt and Sn in alloy/dealloying process can be reused.•5) The obtained Si delivers 2427.7 mAh g−1 at 1 A g−1 after 200 cycles.
A low-cost and easy-available silicon (Si) feedstock is of great significance for developing high-performance lithium-ion battery (LIB) anode materials. Herein, we employ waste crystalline Si solar panels as silicon raw materials, and transform micro-sized Si (m-Si) into porous Si (p-Si) by an alloying/dealloying approach in molten salt where Li+ was first reduced and simultaneously alloyed with m-Si to generate Li-Si alloy at the cathode. Subsequently, the as-prepared Li-Si alloy served as the anode in the same molten salt to release Li+ into the molten salt, resulting in the production of p-Si by taking advantage of the volume expansion/contraction effect. In the whole process, Li+ was shuttled between the electrodes in molten LiCl-KCl, without consuming Li salt. The obtained p-Si was applied as an anode in a half-type LIBs that delivered a capacity of 2427.7 mAh g−1 at 1 A g−1 after 200 cycles with a capacity retention rate of 91.5% (1383.3 mAh g−1 after 500 cycles). Overall, this work offers a straightforward way to convent waste Si panels to high-performance Si anodes for LIBs, giving retired Si a second life and alleviating greenhouse gas emissions caused by Si production.</description><identifier>ISSN: 0956-053X</identifier><identifier>EISSN: 1879-2456</identifier><identifier>DOI: 10.1016/j.wasman.2021.08.037</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alloying/dealloying ; Lithium-ion battery ; Molten salt ; Porous silicon ; Waste photovoltaic modules</subject><ispartof>Waste management (Elmsford), 2021-11, Vol.135, p.182-189</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b2f643821d3b16869b8e7314d303e41777fb099fe7cd06345e9e00e1d302f4d23</citedby><cites>FETCH-LOGICAL-c339t-b2f643821d3b16869b8e7314d303e41777fb099fe7cd06345e9e00e1d302f4d23</cites><orcidid>0000-0001-6530-5006 ; 0000-0003-1765-496X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wasman.2021.08.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhang, Chaofan</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>Cai, Muya</creatorcontrib><creatorcontrib>Zhao, Zhuqing</creatorcontrib><creatorcontrib>Xie, Hongwei</creatorcontrib><creatorcontrib>Ning, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Dihua</creatorcontrib><creatorcontrib>Yin, Huayi</creatorcontrib><title>Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes</title><title>Waste management (Elmsford)</title><description>•1) Waste Si wafer is a promising anode material for LIBs.•2) Alloying/dealloying approach takes advantage of the volume expansion.•3) Molten salt avoids the formation of SEI during the alloying process.•4) The lithium salt and Sn in alloy/dealloying process can be reused.•5) The obtained Si delivers 2427.7 mAh g−1 at 1 A g−1 after 200 cycles.
A low-cost and easy-available silicon (Si) feedstock is of great significance for developing high-performance lithium-ion battery (LIB) anode materials. Herein, we employ waste crystalline Si solar panels as silicon raw materials, and transform micro-sized Si (m-Si) into porous Si (p-Si) by an alloying/dealloying approach in molten salt where Li+ was first reduced and simultaneously alloyed with m-Si to generate Li-Si alloy at the cathode. Subsequently, the as-prepared Li-Si alloy served as the anode in the same molten salt to release Li+ into the molten salt, resulting in the production of p-Si by taking advantage of the volume expansion/contraction effect. In the whole process, Li+ was shuttled between the electrodes in molten LiCl-KCl, without consuming Li salt. The obtained p-Si was applied as an anode in a half-type LIBs that delivered a capacity of 2427.7 mAh g−1 at 1 A g−1 after 200 cycles with a capacity retention rate of 91.5% (1383.3 mAh g−1 after 500 cycles). Overall, this work offers a straightforward way to convent waste Si panels to high-performance Si anodes for LIBs, giving retired Si a second life and alleviating greenhouse gas emissions caused by Si production.</description><subject>Alloying/dealloying</subject><subject>Lithium-ion battery</subject><subject>Molten salt</subject><subject>Porous silicon</subject><subject>Waste photovoltaic modules</subject><issn>0956-053X</issn><issn>1879-2456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVJoZtN_kEOOuZidyTZln0JlCVJC4FCaaA3IcujrhbZciXvhv33ldnQY08zMG_evPkIuWNQMmDN50P5ptOop5IDZyW0JQj5gWxYK7uCV3VzRTbQ1U0Btfj1iVyndABgVctgQ04_0IQTxjMNls4hhmOiyXlnwkRtDCPNzgtSE89p0d67Cf-NU_A60llP6BO1IdK9-70vZoy5z2EMUu-WvTuOhcvqXi_LekZPYcB0Qz5a7RPevtcteX16_Ln7Wrx8f_62-_JSGCG6pei5bSrRcjaInjVt0_UtSsGqQYDAikkpbQ9dZ1GaARpR1dghAGY5cFsNXGzJ_cV3juHPEdOiRpcMep9T51cVryXnDGS9SquL1MSQUkSr5uhGHc-KgVoxq4O6YFYrZgWtypjz2sNlLVPAk8OoknGYvx9cRLOoIbj_G_wFTQaKgA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhang, Chaofan</creator><creator>Ma, Qiang</creator><creator>Cai, Muya</creator><creator>Zhao, Zhuqing</creator><creator>Xie, Hongwei</creator><creator>Ning, Zhiqiang</creator><creator>Wang, Dihua</creator><creator>Yin, Huayi</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6530-5006</orcidid><orcidid>https://orcid.org/0000-0003-1765-496X</orcidid></search><sort><creationdate>202111</creationdate><title>Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes</title><author>Zhang, Chaofan ; Ma, Qiang ; Cai, Muya ; Zhao, Zhuqing ; Xie, Hongwei ; Ning, Zhiqiang ; Wang, Dihua ; Yin, Huayi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b2f643821d3b16869b8e7314d303e41777fb099fe7cd06345e9e00e1d302f4d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying/dealloying</topic><topic>Lithium-ion battery</topic><topic>Molten salt</topic><topic>Porous silicon</topic><topic>Waste photovoltaic modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chaofan</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>Cai, Muya</creatorcontrib><creatorcontrib>Zhao, Zhuqing</creatorcontrib><creatorcontrib>Xie, Hongwei</creatorcontrib><creatorcontrib>Ning, Zhiqiang</creatorcontrib><creatorcontrib>Wang, Dihua</creatorcontrib><creatorcontrib>Yin, Huayi</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Waste management (Elmsford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chaofan</au><au>Ma, Qiang</au><au>Cai, Muya</au><au>Zhao, Zhuqing</au><au>Xie, Hongwei</au><au>Ning, Zhiqiang</au><au>Wang, Dihua</au><au>Yin, Huayi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes</atitle><jtitle>Waste management (Elmsford)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>135</volume><spage>182</spage><epage>189</epage><pages>182-189</pages><issn>0956-053X</issn><eissn>1879-2456</eissn><abstract>•1) Waste Si wafer is a promising anode material for LIBs.•2) Alloying/dealloying approach takes advantage of the volume expansion.•3) Molten salt avoids the formation of SEI during the alloying process.•4) The lithium salt and Sn in alloy/dealloying process can be reused.•5) The obtained Si delivers 2427.7 mAh g−1 at 1 A g−1 after 200 cycles.
A low-cost and easy-available silicon (Si) feedstock is of great significance for developing high-performance lithium-ion battery (LIB) anode materials. Herein, we employ waste crystalline Si solar panels as silicon raw materials, and transform micro-sized Si (m-Si) into porous Si (p-Si) by an alloying/dealloying approach in molten salt where Li+ was first reduced and simultaneously alloyed with m-Si to generate Li-Si alloy at the cathode. Subsequently, the as-prepared Li-Si alloy served as the anode in the same molten salt to release Li+ into the molten salt, resulting in the production of p-Si by taking advantage of the volume expansion/contraction effect. In the whole process, Li+ was shuttled between the electrodes in molten LiCl-KCl, without consuming Li salt. The obtained p-Si was applied as an anode in a half-type LIBs that delivered a capacity of 2427.7 mAh g−1 at 1 A g−1 after 200 cycles with a capacity retention rate of 91.5% (1383.3 mAh g−1 after 500 cycles). Overall, this work offers a straightforward way to convent waste Si panels to high-performance Si anodes for LIBs, giving retired Si a second life and alleviating greenhouse gas emissions caused by Si production.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.wasman.2021.08.037</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6530-5006</orcidid><orcidid>https://orcid.org/0000-0003-1765-496X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-053X |
ispartof | Waste management (Elmsford), 2021-11, Vol.135, p.182-189 |
issn | 0956-053X 1879-2456 |
language | eng |
recordid | cdi_proquest_miscellaneous_2572210752 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alloying/dealloying Lithium-ion battery Molten salt Porous silicon Waste photovoltaic modules |
title | Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20porous%20silicon%20from%20waste%20crystalline%20silicon%20solar%20panels%20for%20high-performance%20lithium-ion%20battery%20anodes&rft.jtitle=Waste%20management%20(Elmsford)&rft.au=Zhang,%20Chaofan&rft.date=2021-11&rft.volume=135&rft.spage=182&rft.epage=189&rft.pages=182-189&rft.issn=0956-053X&rft.eissn=1879-2456&rft_id=info:doi/10.1016/j.wasman.2021.08.037&rft_dat=%3Cproquest_cross%3E2572210752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572210752&rft_id=info:pmid/&rft_els_id=S0956053X21004803&rfr_iscdi=true |