Weak Stabilization of Boolean Networks Under State-Flipped Control

In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2023-05, Vol.34 (5), p.2693-2700
Hauptverfasser: Liu, Zejiao, Zhong, Jie, Liu, Yang, Gui, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2700
container_issue 5
container_start_page 2693
container_title IEEE transaction on neural networks and learning systems
container_volume 34
creator Liu, Zejiao
Zhong, Jie
Liu, Yang
Gui, Weihua
description In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the Q -learning ( Q\text{L} ) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.
doi_str_mv 10.1109/TNNLS.2021.3106918
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571929898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9533186</ieee_id><sourcerecordid>2571929898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldb-yH0ctVoVSD23R25I0s5A2zcbdBNFfb2prD85lBuZ5h-FB6JLgESFY3y1ms-l8RDElI0aw0ESdoD4lgsaUKXV6nOV7Dw1DWOOuBE4E1-eoxzjXWmDZRw9vkG6ieZNmRVl8p03hqsjZ6MG5EtIqmkHz6fwmRMsqB7_jGognZVHXkEdjVzXelRfozKZlgOGhD9By8rgYP8fT16eX8f00XrGENLEGkJQLyBkoioUEqjKFLaM5y5OEK6oTzLTlmeTWipRxS4RVUjGRESaxZgN0u79be_fRQmjMtggrKMu0AtcGQxNJNNVKqw69-YeuXeur7jtDFVaKJULxjqJ7auVdCB6sqX2xTf2XIdjsJJtfyWYn2Rwkd6Hrw-k220J-jPwp7YCrPVAAwHGtE8aIEuwHndV96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808835684</pqid></control><display><type>article</type><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><source>IEEE Xplore</source><creator>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</creator><creatorcontrib>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</creatorcontrib><description><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3106918</identifier><identifier>PMID: 34499607</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Boolean ; Boolean functions ; Boolean networks (BNs) ; Cells (biology) ; Controllability ; Learning systems ; Machine learning ; Nodes ; Numerical stability ; Q-learning (QL) ; Reinforcement learning ; semi-tensor product (STP) ; Stability criteria ; Stabilization ; state-flipped-transition matrix ; Steering ; weak stabilization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-05, Vol.34 (5), p.2693-2700</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</citedby><cites>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</cites><orcidid>0000-0003-3761-0104 ; 0000-0002-7196-5753 ; 0000-0002-5337-6445 ; 0000-0002-3801-7524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9533186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9533186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34499607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zejiao</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></description><subject>Algorithms</subject><subject>Boolean</subject><subject>Boolean functions</subject><subject>Boolean networks (BNs)</subject><subject>Cells (biology)</subject><subject>Controllability</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Numerical stability</subject><subject>Q-learning (QL)</subject><subject>Reinforcement learning</subject><subject>semi-tensor product (STP)</subject><subject>Stability criteria</subject><subject>Stabilization</subject><subject>state-flipped-transition matrix</subject><subject>Steering</subject><subject>weak stabilization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldb-yH0ctVoVSD23R25I0s5A2zcbdBNFfb2prD85lBuZ5h-FB6JLgESFY3y1ms-l8RDElI0aw0ESdoD4lgsaUKXV6nOV7Dw1DWOOuBE4E1-eoxzjXWmDZRw9vkG6ieZNmRVl8p03hqsjZ6MG5EtIqmkHz6fwmRMsqB7_jGognZVHXkEdjVzXelRfozKZlgOGhD9By8rgYP8fT16eX8f00XrGENLEGkJQLyBkoioUEqjKFLaM5y5OEK6oTzLTlmeTWipRxS4RVUjGRESaxZgN0u79be_fRQmjMtggrKMu0AtcGQxNJNNVKqw69-YeuXeur7jtDFVaKJULxjqJ7auVdCB6sqX2xTf2XIdjsJJtfyWYn2Rwkd6Hrw-k220J-jPwp7YCrPVAAwHGtE8aIEuwHndV96w</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Zejiao</creator><creator>Zhong, Jie</creator><creator>Liu, Yang</creator><creator>Gui, Weihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3761-0104</orcidid><orcidid>https://orcid.org/0000-0002-7196-5753</orcidid><orcidid>https://orcid.org/0000-0002-5337-6445</orcidid><orcidid>https://orcid.org/0000-0002-3801-7524</orcidid></search><sort><creationdate>20230501</creationdate><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><author>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Boolean functions</topic><topic>Boolean networks (BNs)</topic><topic>Cells (biology)</topic><topic>Controllability</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Numerical stability</topic><topic>Q-learning (QL)</topic><topic>Reinforcement learning</topic><topic>semi-tensor product (STP)</topic><topic>Stability criteria</topic><topic>Stabilization</topic><topic>state-flipped-transition matrix</topic><topic>Steering</topic><topic>weak stabilization</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zejiao</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zejiao</au><au>Zhong, Jie</au><au>Liu, Yang</au><au>Gui, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Stabilization of Boolean Networks Under State-Flipped Control</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>2693</spage><epage>2700</epage><pages>2693-2700</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>34499607</pmid><doi>10.1109/TNNLS.2021.3106918</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3761-0104</orcidid><orcidid>https://orcid.org/0000-0002-7196-5753</orcidid><orcidid>https://orcid.org/0000-0002-5337-6445</orcidid><orcidid>https://orcid.org/0000-0002-3801-7524</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2023-05, Vol.34 (5), p.2693-2700
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_miscellaneous_2571929898
source IEEE Xplore
subjects Algorithms
Boolean
Boolean functions
Boolean networks (BNs)
Cells (biology)
Controllability
Learning systems
Machine learning
Nodes
Numerical stability
Q-learning (QL)
Reinforcement learning
semi-tensor product (STP)
Stability criteria
Stabilization
state-flipped-transition matrix
Steering
weak stabilization
title Weak Stabilization of Boolean Networks Under State-Flipped Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Stabilization%20of%20Boolean%20Networks%20Under%20State-Flipped%20Control&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Zejiao&rft.date=2023-05-01&rft.volume=34&rft.issue=5&rft.spage=2693&rft.epage=2700&rft.pages=2693-2700&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3106918&rft_dat=%3Cproquest_RIE%3E2571929898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808835684&rft_id=info:pmid/34499607&rft_ieee_id=9533186&rfr_iscdi=true