Weak Stabilization of Boolean Networks Under State-Flipped Control
In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped contr...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-05, Vol.34 (5), p.2693-2700 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2700 |
---|---|
container_issue | 5 |
container_start_page | 2693 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Liu, Zejiao Zhong, Jie Liu, Yang Gui, Weihua |
description | In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the Q -learning ( Q\text{L} ) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results. |
doi_str_mv | 10.1109/TNNLS.2021.3106918 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571929898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9533186</ieee_id><sourcerecordid>2571929898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldb-yH0ctVoVSD23R25I0s5A2zcbdBNFfb2prD85lBuZ5h-FB6JLgESFY3y1ms-l8RDElI0aw0ESdoD4lgsaUKXV6nOV7Dw1DWOOuBE4E1-eoxzjXWmDZRw9vkG6ieZNmRVl8p03hqsjZ6MG5EtIqmkHz6fwmRMsqB7_jGognZVHXkEdjVzXelRfozKZlgOGhD9By8rgYP8fT16eX8f00XrGENLEGkJQLyBkoioUEqjKFLaM5y5OEK6oTzLTlmeTWipRxS4RVUjGRESaxZgN0u79be_fRQmjMtggrKMu0AtcGQxNJNNVKqw69-YeuXeur7jtDFVaKJULxjqJ7auVdCB6sqX2xTf2XIdjsJJtfyWYn2Rwkd6Hrw-k220J-jPwp7YCrPVAAwHGtE8aIEuwHndV96w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2808835684</pqid></control><display><type>article</type><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><source>IEEE Xplore</source><creator>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</creator><creatorcontrib>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</creatorcontrib><description><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3106918</identifier><identifier>PMID: 34499607</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Boolean ; Boolean functions ; Boolean networks (BNs) ; Cells (biology) ; Controllability ; Learning systems ; Machine learning ; Nodes ; Numerical stability ; Q-learning (QL) ; Reinforcement learning ; semi-tensor product (STP) ; Stability criteria ; Stabilization ; state-flipped-transition matrix ; Steering ; weak stabilization</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-05, Vol.34 (5), p.2693-2700</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</citedby><cites>FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</cites><orcidid>0000-0003-3761-0104 ; 0000-0002-7196-5753 ; 0000-0002-5337-6445 ; 0000-0002-3801-7524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9533186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9533186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34499607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zejiao</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></description><subject>Algorithms</subject><subject>Boolean</subject><subject>Boolean functions</subject><subject>Boolean networks (BNs)</subject><subject>Cells (biology)</subject><subject>Controllability</subject><subject>Learning systems</subject><subject>Machine learning</subject><subject>Nodes</subject><subject>Numerical stability</subject><subject>Q-learning (QL)</subject><subject>Reinforcement learning</subject><subject>semi-tensor product (STP)</subject><subject>Stability criteria</subject><subject>Stabilization</subject><subject>state-flipped-transition matrix</subject><subject>Steering</subject><subject>weak stabilization</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbKn9AwoS8OIldb-yH0ctVoVSD23R25I0s5A2zcbdBNFfb2prD85lBuZ5h-FB6JLgESFY3y1ms-l8RDElI0aw0ESdoD4lgsaUKXV6nOV7Dw1DWOOuBE4E1-eoxzjXWmDZRw9vkG6ieZNmRVl8p03hqsjZ6MG5EtIqmkHz6fwmRMsqB7_jGognZVHXkEdjVzXelRfozKZlgOGhD9By8rgYP8fT16eX8f00XrGENLEGkJQLyBkoioUEqjKFLaM5y5OEK6oTzLTlmeTWipRxS4RVUjGRESaxZgN0u79be_fRQmjMtggrKMu0AtcGQxNJNNVKqw69-YeuXeur7jtDFVaKJULxjqJ7auVdCB6sqX2xTf2XIdjsJJtfyWYn2Rwkd6Hrw-k220J-jPwp7YCrPVAAwHGtE8aIEuwHndV96w</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Liu, Zejiao</creator><creator>Zhong, Jie</creator><creator>Liu, Yang</creator><creator>Gui, Weihua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3761-0104</orcidid><orcidid>https://orcid.org/0000-0002-7196-5753</orcidid><orcidid>https://orcid.org/0000-0002-5337-6445</orcidid><orcidid>https://orcid.org/0000-0002-3801-7524</orcidid></search><sort><creationdate>20230501</creationdate><title>Weak Stabilization of Boolean Networks Under State-Flipped Control</title><author>Liu, Zejiao ; Zhong, Jie ; Liu, Yang ; Gui, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9ee7246ed3e82067e28b80f32d3d5548295039f4b74ff6a34f16f87836b137093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Boolean</topic><topic>Boolean functions</topic><topic>Boolean networks (BNs)</topic><topic>Cells (biology)</topic><topic>Controllability</topic><topic>Learning systems</topic><topic>Machine learning</topic><topic>Nodes</topic><topic>Numerical stability</topic><topic>Q-learning (QL)</topic><topic>Reinforcement learning</topic><topic>semi-tensor product (STP)</topic><topic>Stability criteria</topic><topic>Stabilization</topic><topic>state-flipped-transition matrix</topic><topic>Steering</topic><topic>weak stabilization</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zejiao</creatorcontrib><creatorcontrib>Zhong, Jie</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gui, Weihua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zejiao</au><au>Zhong, Jie</au><au>Liu, Yang</au><au>Gui, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Stabilization of Boolean Networks Under State-Flipped Control</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>2693</spage><epage>2700</epage><pages>2693-2700</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[In this brief, stabilization of Boolean networks (BNs) by flipping a subset of nodes is considered, here we call such action state-flipped control. The state-flipped control implies that the logical variables of certain nodes are flipped from 1 to 0 or 0 to 1 as time flows. Under state-flipped control on certain nodes, a state-flipped-transition matrix is defined to describe the impact on the state transition space. Weak stabilization is first defined and then some criteria are presented to judge the same. An algorithm is proposed to find a stabilizing kernel such that BNs can achieve weak stabilization to the desired state with in-degree more than 0. By defining a reachable set, another approach is proposed to verify weak stabilization, and an algorithm is given to obtain a flip sequence steering an initial state to a given target state. Subsequently, the issue of finding flip sequences to steer BNs from weak stabilization to global stabilization is addressed. In addition, a model-free reinforcement algorithm, namely the <inline-formula> <tex-math notation="LaTeX">Q </tex-math></inline-formula>-learning (<inline-formula> <tex-math notation="LaTeX">Q\text{L} </tex-math></inline-formula>) algorithm, is developed to find flip sequences to achieve global stabilization. Finally, several numerical examples are given to illustrate the obtained theoretical results.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>34499607</pmid><doi>10.1109/TNNLS.2021.3106918</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3761-0104</orcidid><orcidid>https://orcid.org/0000-0002-7196-5753</orcidid><orcidid>https://orcid.org/0000-0002-5337-6445</orcidid><orcidid>https://orcid.org/0000-0002-3801-7524</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-05, Vol.34 (5), p.2693-2700 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2571929898 |
source | IEEE Xplore |
subjects | Algorithms Boolean Boolean functions Boolean networks (BNs) Cells (biology) Controllability Learning systems Machine learning Nodes Numerical stability Q-learning (QL) Reinforcement learning semi-tensor product (STP) Stability criteria Stabilization state-flipped-transition matrix Steering weak stabilization |
title | Weak Stabilization of Boolean Networks Under State-Flipped Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Stabilization%20of%20Boolean%20Networks%20Under%20State-Flipped%20Control&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Zejiao&rft.date=2023-05-01&rft.volume=34&rft.issue=5&rft.spage=2693&rft.epage=2700&rft.pages=2693-2700&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3106918&rft_dat=%3Cproquest_RIE%3E2571929898%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2808835684&rft_id=info:pmid/34499607&rft_ieee_id=9533186&rfr_iscdi=true |