Automatic recognition of landmarks on digital dental models

Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2021-10, Vol.137, p.104819-104819, Article 104819
Hauptverfasser: Woodsend, Brénainn, Koufoudaki, Eirini, Mossey, Peter A., Lin, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104819
container_issue
container_start_page 104819
container_title Computers in biology and medicine
container_volume 137
creator Woodsend, Brénainn
Koufoudaki, Eirini
Mossey, Peter A.
Lin, Ping
description Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental models hinder studies requiring large sample size to penetrate statistical noise. We have developed techniques and a software implementing these techniques to map out automatically, 3D dental scans. This process is divided into consecutive steps – determining a model's orientation, separating and identifying the individual tooth and finding landmarks on each tooth – described in this paper. The examples to demonstrate the techniques, software and discussions on remaining issues are provided as well. The software is originally designed to automate Modified Huddard Bodemham (MHB) landmarking for assessing cleft lip/palate patients. Currently only MHB landmarks are supported, however it is extendable to any predetermined landmarks. The software, coupled with intra-oral scanning innovation, should supersede the arduous and error prone plaster model and calipers approach to Dental research, and provide a stepping-stone towards automation of routine clinical assessments such as “index of orthodontic treatment need” (IOTN). [Display omitted] •The first fully automatic detection of landmarks for the time-consuming but objective Modified Huddard Bodenham system.•This method features finding a model's orientation, its peak points, partitioning and identify each tooth.•The methods and software are evaluated on 239 dental models giving 79.7% per-tooth accuracy.•The method may be extended to any predetermined landmarks for automation of routine clinical assessments (e.g. IOTN).
doi_str_mv 10.1016/j.compbiomed.2021.104819
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571919820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521006132</els_id><sourcerecordid>2571919820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-9c7afbae406ace37f56ee1d7c33c1d6e8cb33b2dbd8b5426ae7f3a569dc5ca363</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-h4IXL13z3RZPq_gFC170HNJkuqS2zZq0gv_elAqCF0_DDM8M8z4IZQRvCCbyut0Y3x9q53uwG4opSWNekuoIrUhZVDkWjB-jFcYE57yk4hSdxdhijDlmeIVuttPoez06kwUwfj-40fkh803W6cH2OrzHLPXW7d2ou8zCMJfeW-jiOTppdBfh4qeu0dvD_evdU757eXy-2-5yw2k15pUpdFNr4FhqA6xohAQgtjCMGWIllKZmrKa2tmUtOJUaioZpIStrhNFMsjW6Wu4egv-YII6qd9FAlz4EP0VFRUEqUpUUJ_TyD9r6KQzpu5kqOJeSi0SVC2WCjzFAow7BpaxfimA1W1Wt-rWqZqtqsZpWb5fVlB8-HQQVjYPBgHXJ36isd_8f-QbcbYXi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577446645</pqid></control><display><type>article</type><title>Automatic recognition of landmarks on digital dental models</title><source>Elsevier ScienceDirect Journals</source><creator>Woodsend, Brénainn ; Koufoudaki, Eirini ; Mossey, Peter A. ; Lin, Ping</creator><creatorcontrib>Woodsend, Brénainn ; Koufoudaki, Eirini ; Mossey, Peter A. ; Lin, Ping</creatorcontrib><description>Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental models hinder studies requiring large sample size to penetrate statistical noise. We have developed techniques and a software implementing these techniques to map out automatically, 3D dental scans. This process is divided into consecutive steps – determining a model's orientation, separating and identifying the individual tooth and finding landmarks on each tooth – described in this paper. The examples to demonstrate the techniques, software and discussions on remaining issues are provided as well. The software is originally designed to automate Modified Huddard Bodemham (MHB) landmarking for assessing cleft lip/palate patients. Currently only MHB landmarks are supported, however it is extendable to any predetermined landmarks. The software, coupled with intra-oral scanning innovation, should supersede the arduous and error prone plaster model and calipers approach to Dental research, and provide a stepping-stone towards automation of routine clinical assessments such as “index of orthodontic treatment need” (IOTN). [Display omitted] •The first fully automatic detection of landmarks for the time-consuming but objective Modified Huddard Bodenham system.•This method features finding a model's orientation, its peak points, partitioning and identify each tooth.•The methods and software are evaluated on 239 dental models giving 79.7% per-tooth accuracy.•The method may be extended to any predetermined landmarks for automation of routine clinical assessments (e.g. IOTN).</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104819</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>3D analysis ; Accuracy ; Artificial intelligence ; Assessments ; Automation ; Calipers ; Cleft lip/palate ; Computer programs ; Dental ; Dentistry ; Human error ; Labeling ; Landmarks ; Orthodontics ; Plaster ; Principal components analysis ; Software ; Statistical analysis ; Surgical outcomes ; Teaching methods ; Teeth</subject><ispartof>Computers in biology and medicine, 2021-10, Vol.137, p.104819-104819, Article 104819</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-9c7afbae406ace37f56ee1d7c33c1d6e8cb33b2dbd8b5426ae7f3a569dc5ca363</citedby><cites>FETCH-LOGICAL-c429t-9c7afbae406ace37f56ee1d7c33c1d6e8cb33b2dbd8b5426ae7f3a569dc5ca363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482521006132$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Woodsend, Brénainn</creatorcontrib><creatorcontrib>Koufoudaki, Eirini</creatorcontrib><creatorcontrib>Mossey, Peter A.</creatorcontrib><creatorcontrib>Lin, Ping</creatorcontrib><title>Automatic recognition of landmarks on digital dental models</title><title>Computers in biology and medicine</title><description>Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental models hinder studies requiring large sample size to penetrate statistical noise. We have developed techniques and a software implementing these techniques to map out automatically, 3D dental scans. This process is divided into consecutive steps – determining a model's orientation, separating and identifying the individual tooth and finding landmarks on each tooth – described in this paper. The examples to demonstrate the techniques, software and discussions on remaining issues are provided as well. The software is originally designed to automate Modified Huddard Bodemham (MHB) landmarking for assessing cleft lip/palate patients. Currently only MHB landmarks are supported, however it is extendable to any predetermined landmarks. The software, coupled with intra-oral scanning innovation, should supersede the arduous and error prone plaster model and calipers approach to Dental research, and provide a stepping-stone towards automation of routine clinical assessments such as “index of orthodontic treatment need” (IOTN). [Display omitted] •The first fully automatic detection of landmarks for the time-consuming but objective Modified Huddard Bodenham system.•This method features finding a model's orientation, its peak points, partitioning and identify each tooth.•The methods and software are evaluated on 239 dental models giving 79.7% per-tooth accuracy.•The method may be extended to any predetermined landmarks for automation of routine clinical assessments (e.g. IOTN).</description><subject>3D analysis</subject><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Assessments</subject><subject>Automation</subject><subject>Calipers</subject><subject>Cleft lip/palate</subject><subject>Computer programs</subject><subject>Dental</subject><subject>Dentistry</subject><subject>Human error</subject><subject>Labeling</subject><subject>Landmarks</subject><subject>Orthodontics</subject><subject>Plaster</subject><subject>Principal components analysis</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Surgical outcomes</subject><subject>Teaching methods</subject><subject>Teeth</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1LxDAQhoMouK7-h4IXL13z3RZPq_gFC170HNJkuqS2zZq0gv_elAqCF0_DDM8M8z4IZQRvCCbyut0Y3x9q53uwG4opSWNekuoIrUhZVDkWjB-jFcYE57yk4hSdxdhijDlmeIVuttPoez06kwUwfj-40fkh803W6cH2OrzHLPXW7d2ou8zCMJfeW-jiOTppdBfh4qeu0dvD_evdU757eXy-2-5yw2k15pUpdFNr4FhqA6xohAQgtjCMGWIllKZmrKa2tmUtOJUaioZpIStrhNFMsjW6Wu4egv-YII6qd9FAlz4EP0VFRUEqUpUUJ_TyD9r6KQzpu5kqOJeSi0SVC2WCjzFAow7BpaxfimA1W1Wt-rWqZqtqsZpWb5fVlB8-HQQVjYPBgHXJ36isd_8f-QbcbYXi</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Woodsend, Brénainn</creator><creator>Koufoudaki, Eirini</creator><creator>Mossey, Peter A.</creator><creator>Lin, Ping</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Automatic recognition of landmarks on digital dental models</title><author>Woodsend, Brénainn ; Koufoudaki, Eirini ; Mossey, Peter A. ; Lin, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-9c7afbae406ace37f56ee1d7c33c1d6e8cb33b2dbd8b5426ae7f3a569dc5ca363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D analysis</topic><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Assessments</topic><topic>Automation</topic><topic>Calipers</topic><topic>Cleft lip/palate</topic><topic>Computer programs</topic><topic>Dental</topic><topic>Dentistry</topic><topic>Human error</topic><topic>Labeling</topic><topic>Landmarks</topic><topic>Orthodontics</topic><topic>Plaster</topic><topic>Principal components analysis</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Surgical outcomes</topic><topic>Teaching methods</topic><topic>Teeth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woodsend, Brénainn</creatorcontrib><creatorcontrib>Koufoudaki, Eirini</creatorcontrib><creatorcontrib>Mossey, Peter A.</creatorcontrib><creatorcontrib>Lin, Ping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woodsend, Brénainn</au><au>Koufoudaki, Eirini</au><au>Mossey, Peter A.</au><au>Lin, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic recognition of landmarks on digital dental models</atitle><jtitle>Computers in biology and medicine</jtitle><date>2021-10</date><risdate>2021</risdate><volume>137</volume><spage>104819</spage><epage>104819</epage><pages>104819-104819</pages><artnum>104819</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Fundamental principle in improving Dental and Orthodontic treatments is the ability to quantitatively assess and cross-compare their outcomes. Such assessments require calculating distances and angles from 3D coordinates of dental landmarks. The costly and repetitive task of hand-labelling dental models hinder studies requiring large sample size to penetrate statistical noise. We have developed techniques and a software implementing these techniques to map out automatically, 3D dental scans. This process is divided into consecutive steps – determining a model's orientation, separating and identifying the individual tooth and finding landmarks on each tooth – described in this paper. The examples to demonstrate the techniques, software and discussions on remaining issues are provided as well. The software is originally designed to automate Modified Huddard Bodemham (MHB) landmarking for assessing cleft lip/palate patients. Currently only MHB landmarks are supported, however it is extendable to any predetermined landmarks. The software, coupled with intra-oral scanning innovation, should supersede the arduous and error prone plaster model and calipers approach to Dental research, and provide a stepping-stone towards automation of routine clinical assessments such as “index of orthodontic treatment need” (IOTN). [Display omitted] •The first fully automatic detection of landmarks for the time-consuming but objective Modified Huddard Bodenham system.•This method features finding a model's orientation, its peak points, partitioning and identify each tooth.•The methods and software are evaluated on 239 dental models giving 79.7% per-tooth accuracy.•The method may be extended to any predetermined landmarks for automation of routine clinical assessments (e.g. IOTN).</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2021.104819</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2021-10, Vol.137, p.104819-104819, Article 104819
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2571919820
source Elsevier ScienceDirect Journals
subjects 3D analysis
Accuracy
Artificial intelligence
Assessments
Automation
Calipers
Cleft lip/palate
Computer programs
Dental
Dentistry
Human error
Labeling
Landmarks
Orthodontics
Plaster
Principal components analysis
Software
Statistical analysis
Surgical outcomes
Teaching methods
Teeth
title Automatic recognition of landmarks on digital dental models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20recognition%20of%20landmarks%20on%20digital%20dental%20models&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Woodsend,%20Br%C3%A9nainn&rft.date=2021-10&rft.volume=137&rft.spage=104819&rft.epage=104819&rft.pages=104819-104819&rft.artnum=104819&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104819&rft_dat=%3Cproquest_cross%3E2571919820%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577446645&rft_id=info:pmid/&rft_els_id=S0010482521006132&rfr_iscdi=true