A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis

[Display omitted] Exploring innovation strategies has huge potential to significantly improving both activity and stability of current catalysts. Here, a chainmail design is proposed to enable the electronic interaction of ultrathin nitrogen-doped carbon shell with Ni2P nanorod core arrayed on nicke...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2022-02, Vol.607, p.281-289
Hauptverfasser: Zhang, Heng, Li, Wenqiang, Feng, Xun, Zhu, Lin, Fang, Qinzhu, Li, Shuang, Wang, Liya, Li, Zhongjun, Kou, Zongkui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue
container_start_page 281
container_title Journal of colloid and interface science
container_volume 607
creator Zhang, Heng
Li, Wenqiang
Feng, Xun
Zhu, Lin
Fang, Qinzhu
Li, Shuang
Wang, Liya
Li, Zhongjun
Kou, Zongkui
description [Display omitted] Exploring innovation strategies has huge potential to significantly improving both activity and stability of current catalysts. Here, a chainmail design is proposed to enable the electronic interaction of ultrathin nitrogen-doped carbon shell with Ni2P nanorod core arrayed on nickel foam (Ni2P@NC/NF) for simultaneously promoting the activity and stability in both alkaline and neutral hydrogen evolution reaction (HER). The easy penetration of valence electrons from active Ni2P core to NC shell enables the obvious improvement of HER performance compared to pure Ni2P. In 1 M KOH and 1 M PBS solution, the resultant Ni2P@NC/NF requires the ultralow overpotentials of only 93 and 96 mV to drive the current density of 10 mA cm−2 with the Faradaic efficiency of 96% and 94%, respectively. Remarkably, such a chainmail design also reveals an obviously improved stability with almost negligible performance degradation under the current density of 20 mA cm−2 for 30 h. Theoretical calculations confirm that the nitrogen-doped carbon shell improves the durability of transition metal phosphides by increasing the dissolution resistance of Ni atoms. The proposed concept may create a new pathway for synchronizing high activity and robust stability in manipulating heterogeneous catalytic properties.
doi_str_mv 10.1016/j.jcis.2021.08.169
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571918474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721014053</els_id><sourcerecordid>2571918474</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-828255fb14ca87fe651ec7a316d681c157d922c77411bd259e463aece38e37d73</originalsourceid><addsrcrecordid>eNp9kD9PwzAUxC0EEqXwBZg8siT42XGcSCwI8U9CwACz5dov1FUaFztF6sRXx6HMTO-kd3fS_Qg5B1YCg_pyVa6sTyVnHErWlFC3B2QGrJWFAiYOyYzlT9GqVh2Tk5RWjAFI2c7I9zW1S-OHtfE9xa5DO9LQ0W0_RjMu_UCfCxc26Kg1cREGmpbY9zSLZ89f6WCGEIOjJkazS7QLcerw1uMw0uXOxfCBA8Wv0G9Hn0MRjf0V1oym3yWfTslRZ_qEZ393Tt7vbt9uHoqnl_vHm-unwgohxqLhDZeyW0BlTaM6rCWgVUZA7eoGLEjlWs6tUhXAwnHZYlULgxZFg0I5JebkYt-7ieFzi2nUa59s3mIGDNukuVTQQlOpKlv53mpjSClipzfRr03caWB6oq1XeqKtJ9qaNTrTzqGrfQjziC-PUaeJgkXnY2aqXfD_xX8ATfOKVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571918474</pqid></control><display><type>article</type><title>A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhang, Heng ; Li, Wenqiang ; Feng, Xun ; Zhu, Lin ; Fang, Qinzhu ; Li, Shuang ; Wang, Liya ; Li, Zhongjun ; Kou, Zongkui</creator><creatorcontrib>Zhang, Heng ; Li, Wenqiang ; Feng, Xun ; Zhu, Lin ; Fang, Qinzhu ; Li, Shuang ; Wang, Liya ; Li, Zhongjun ; Kou, Zongkui</creatorcontrib><description>[Display omitted] Exploring innovation strategies has huge potential to significantly improving both activity and stability of current catalysts. Here, a chainmail design is proposed to enable the electronic interaction of ultrathin nitrogen-doped carbon shell with Ni2P nanorod core arrayed on nickel foam (Ni2P@NC/NF) for simultaneously promoting the activity and stability in both alkaline and neutral hydrogen evolution reaction (HER). The easy penetration of valence electrons from active Ni2P core to NC shell enables the obvious improvement of HER performance compared to pure Ni2P. In 1 M KOH and 1 M PBS solution, the resultant Ni2P@NC/NF requires the ultralow overpotentials of only 93 and 96 mV to drive the current density of 10 mA cm−2 with the Faradaic efficiency of 96% and 94%, respectively. Remarkably, such a chainmail design also reveals an obviously improved stability with almost negligible performance degradation under the current density of 20 mA cm−2 for 30 h. Theoretical calculations confirm that the nitrogen-doped carbon shell improves the durability of transition metal phosphides by increasing the dissolution resistance of Ni atoms. The proposed concept may create a new pathway for synchronizing high activity and robust stability in manipulating heterogeneous catalytic properties.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.08.169</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Chainmail design ; Core-shell structure ; Hydrogen evolution reaction ; Nanorods ; Superior stability</subject><ispartof>Journal of colloid and interface science, 2022-02, Vol.607, p.281-289</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-828255fb14ca87fe651ec7a316d681c157d922c77411bd259e463aece38e37d73</citedby><cites>FETCH-LOGICAL-c333t-828255fb14ca87fe651ec7a316d681c157d922c77411bd259e463aece38e37d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979721014053$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Li, Wenqiang</creatorcontrib><creatorcontrib>Feng, Xun</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Fang, Qinzhu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Wang, Liya</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><creatorcontrib>Kou, Zongkui</creatorcontrib><title>A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis</title><title>Journal of colloid and interface science</title><description>[Display omitted] Exploring innovation strategies has huge potential to significantly improving both activity and stability of current catalysts. Here, a chainmail design is proposed to enable the electronic interaction of ultrathin nitrogen-doped carbon shell with Ni2P nanorod core arrayed on nickel foam (Ni2P@NC/NF) for simultaneously promoting the activity and stability in both alkaline and neutral hydrogen evolution reaction (HER). The easy penetration of valence electrons from active Ni2P core to NC shell enables the obvious improvement of HER performance compared to pure Ni2P. In 1 M KOH and 1 M PBS solution, the resultant Ni2P@NC/NF requires the ultralow overpotentials of only 93 and 96 mV to drive the current density of 10 mA cm−2 with the Faradaic efficiency of 96% and 94%, respectively. Remarkably, such a chainmail design also reveals an obviously improved stability with almost negligible performance degradation under the current density of 20 mA cm−2 for 30 h. Theoretical calculations confirm that the nitrogen-doped carbon shell improves the durability of transition metal phosphides by increasing the dissolution resistance of Ni atoms. The proposed concept may create a new pathway for synchronizing high activity and robust stability in manipulating heterogeneous catalytic properties.</description><subject>Chainmail design</subject><subject>Core-shell structure</subject><subject>Hydrogen evolution reaction</subject><subject>Nanorods</subject><subject>Superior stability</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAUxC0EEqXwBZg8siT42XGcSCwI8U9CwACz5dov1FUaFztF6sRXx6HMTO-kd3fS_Qg5B1YCg_pyVa6sTyVnHErWlFC3B2QGrJWFAiYOyYzlT9GqVh2Tk5RWjAFI2c7I9zW1S-OHtfE9xa5DO9LQ0W0_RjMu_UCfCxc26Kg1cREGmpbY9zSLZ89f6WCGEIOjJkazS7QLcerw1uMw0uXOxfCBA8Wv0G9Hn0MRjf0V1oym3yWfTslRZ_qEZ393Tt7vbt9uHoqnl_vHm-unwgohxqLhDZeyW0BlTaM6rCWgVUZA7eoGLEjlWs6tUhXAwnHZYlULgxZFg0I5JebkYt-7ieFzi2nUa59s3mIGDNukuVTQQlOpKlv53mpjSClipzfRr03caWB6oq1XeqKtJ9qaNTrTzqGrfQjziC-PUaeJgkXnY2aqXfD_xX8ATfOKVg</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Zhang, Heng</creator><creator>Li, Wenqiang</creator><creator>Feng, Xun</creator><creator>Zhu, Lin</creator><creator>Fang, Qinzhu</creator><creator>Li, Shuang</creator><creator>Wang, Liya</creator><creator>Li, Zhongjun</creator><creator>Kou, Zongkui</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202202</creationdate><title>A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis</title><author>Zhang, Heng ; Li, Wenqiang ; Feng, Xun ; Zhu, Lin ; Fang, Qinzhu ; Li, Shuang ; Wang, Liya ; Li, Zhongjun ; Kou, Zongkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-828255fb14ca87fe651ec7a316d681c157d922c77411bd259e463aece38e37d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chainmail design</topic><topic>Core-shell structure</topic><topic>Hydrogen evolution reaction</topic><topic>Nanorods</topic><topic>Superior stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Li, Wenqiang</creatorcontrib><creatorcontrib>Feng, Xun</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><creatorcontrib>Fang, Qinzhu</creatorcontrib><creatorcontrib>Li, Shuang</creatorcontrib><creatorcontrib>Wang, Liya</creatorcontrib><creatorcontrib>Li, Zhongjun</creatorcontrib><creatorcontrib>Kou, Zongkui</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Heng</au><au>Li, Wenqiang</au><au>Feng, Xun</au><au>Zhu, Lin</au><au>Fang, Qinzhu</au><au>Li, Shuang</au><au>Wang, Liya</au><au>Li, Zhongjun</au><au>Kou, Zongkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-02</date><risdate>2022</risdate><volume>607</volume><spage>281</spage><epage>289</epage><pages>281-289</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Exploring innovation strategies has huge potential to significantly improving both activity and stability of current catalysts. Here, a chainmail design is proposed to enable the electronic interaction of ultrathin nitrogen-doped carbon shell with Ni2P nanorod core arrayed on nickel foam (Ni2P@NC/NF) for simultaneously promoting the activity and stability in both alkaline and neutral hydrogen evolution reaction (HER). The easy penetration of valence electrons from active Ni2P core to NC shell enables the obvious improvement of HER performance compared to pure Ni2P. In 1 M KOH and 1 M PBS solution, the resultant Ni2P@NC/NF requires the ultralow overpotentials of only 93 and 96 mV to drive the current density of 10 mA cm−2 with the Faradaic efficiency of 96% and 94%, respectively. Remarkably, such a chainmail design also reveals an obviously improved stability with almost negligible performance degradation under the current density of 20 mA cm−2 for 30 h. Theoretical calculations confirm that the nitrogen-doped carbon shell improves the durability of transition metal phosphides by increasing the dissolution resistance of Ni atoms. The proposed concept may create a new pathway for synchronizing high activity and robust stability in manipulating heterogeneous catalytic properties.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2021.08.169</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2022-02, Vol.607, p.281-289
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2571918474
source Elsevier ScienceDirect Journals Complete
subjects Chainmail design
Core-shell structure
Hydrogen evolution reaction
Nanorods
Superior stability
title A chainmail effect of ultrathin N-doped carbon shell on Ni2P nanorod arrays for efficient hydrogen evolution reaction catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20chainmail%20effect%20of%20ultrathin%20N-doped%20carbon%20shell%20on%20Ni2P%20nanorod%20arrays%20for%20efficient%20hydrogen%20evolution%20reaction%20catalysis&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Zhang,%20Heng&rft.date=2022-02&rft.volume=607&rft.spage=281&rft.epage=289&rft.pages=281-289&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.08.169&rft_dat=%3Cproquest_cross%3E2571918474%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571918474&rft_id=info:pmid/&rft_els_id=S0021979721014053&rfr_iscdi=true