Inverse Laplace transformation analysis of stretched exponential relaxation
[Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nucl...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2021-10, Vol.331, p.107050-107050, Article 107050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 107050 |
---|---|
container_issue | |
container_start_page | 107050 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 331 |
creator | Choi, H. Vinograd, I. Chaffey, C. Curro, N.J. |
description | [Display omitted]
•The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described.
We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits. |
doi_str_mv | 10.1016/j.jmr.2021.107050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571918465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780721001397</els_id><sourcerecordid>2571918465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXDaZumESc08TExiQucIy91Rao2KUk3jX9Pt3HmZFt-Xkt-GLvlsODAy_t20fZhkUHGp1mCgDM246DKFCpRnh97SGUF8pJdxdgCcC4kzNjbyu0oRErWOHRoKBkDutj40ONovUvQYfcTbUx8k8Qx0Gi-qE5oP3hHbrTYJYE63B_ha3bRYBfp5q_O2efz08fyNV2_v6yWj-vUFLkaU6oNlRuBQCVCVZg8hwblRplCyZqKDKtNUYvGCJkrKfOmUgIUYZXlEqddk8_Z3enuEPz3luKoexsNdR068tuoMyG54lVRignlJ9QEH2OgRg_B9hh-NAd9EKdbPYnTB3H6JG7KPJwyNP2wsxR0NJacodoGMqOuvf0n_QvcuneT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571918465</pqid></control><display><type>article</type><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</creator><creatorcontrib>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</creatorcontrib><description>[Display omitted]
•The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described.
We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2021.107050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Distribution ; Inhomogeneity ; Inverse laplace transform ; Spin lattice relaxation</subject><ispartof>Journal of magnetic resonance (1997), 2021-10, Vol.331, p.107050-107050, Article 107050</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</citedby><cites>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2021.107050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Vinograd, I.</creatorcontrib><creatorcontrib>Chaffey, C.</creatorcontrib><creatorcontrib>Curro, N.J.</creatorcontrib><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><title>Journal of magnetic resonance (1997)</title><description>[Display omitted]
•The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described.
We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</description><subject>Distribution</subject><subject>Inhomogeneity</subject><subject>Inverse laplace transform</subject><subject>Spin lattice relaxation</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXDaZumESc08TExiQucIy91Rao2KUk3jX9Pt3HmZFt-Xkt-GLvlsODAy_t20fZhkUHGp1mCgDM246DKFCpRnh97SGUF8pJdxdgCcC4kzNjbyu0oRErWOHRoKBkDutj40ONovUvQYfcTbUx8k8Qx0Gi-qE5oP3hHbrTYJYE63B_ha3bRYBfp5q_O2efz08fyNV2_v6yWj-vUFLkaU6oNlRuBQCVCVZg8hwblRplCyZqKDKtNUYvGCJkrKfOmUgIUYZXlEqddk8_Z3enuEPz3luKoexsNdR068tuoMyG54lVRignlJ9QEH2OgRg_B9hh-NAd9EKdbPYnTB3H6JG7KPJwyNP2wsxR0NJacodoGMqOuvf0n_QvcuneT</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Choi, H.</creator><creator>Vinograd, I.</creator><creator>Chaffey, C.</creator><creator>Curro, N.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><author>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution</topic><topic>Inhomogeneity</topic><topic>Inverse laplace transform</topic><topic>Spin lattice relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Vinograd, I.</creatorcontrib><creatorcontrib>Chaffey, C.</creatorcontrib><creatorcontrib>Curro, N.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, H.</au><au>Vinograd, I.</au><au>Chaffey, C.</au><au>Curro, N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Laplace transformation analysis of stretched exponential relaxation</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><date>2021-10</date><risdate>2021</risdate><volume>331</volume><spage>107050</spage><epage>107050</epage><pages>107050-107050</pages><artnum>107050</artnum><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted]
•The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described.
We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmr.2021.107050</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2021-10, Vol.331, p.107050-107050, Article 107050 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_proquest_miscellaneous_2571918465 |
source | Access via ScienceDirect (Elsevier) |
subjects | Distribution Inhomogeneity Inverse laplace transform Spin lattice relaxation |
title | Inverse Laplace transformation analysis of stretched exponential relaxation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Laplace%20transformation%20analysis%20of%20stretched%20exponential%20relaxation&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Choi,%20H.&rft.date=2021-10&rft.volume=331&rft.spage=107050&rft.epage=107050&rft.pages=107050-107050&rft.artnum=107050&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2021.107050&rft_dat=%3Cproquest_cross%3E2571918465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571918465&rft_id=info:pmid/&rft_els_id=S1090780721001397&rfr_iscdi=true |