Inverse Laplace transformation analysis of stretched exponential relaxation

[Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nucl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2021-10, Vol.331, p.107050-107050, Article 107050
Hauptverfasser: Choi, H., Vinograd, I., Chaffey, C., Curro, N.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107050
container_issue
container_start_page 107050
container_title Journal of magnetic resonance (1997)
container_volume 331
creator Choi, H.
Vinograd, I.
Chaffey, C.
Curro, N.J.
description [Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described. We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I>1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.
doi_str_mv 10.1016/j.jmr.2021.107050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571918465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780721001397</els_id><sourcerecordid>2571918465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXDaZumESc08TExiQucIy91Rao2KUk3jX9Pt3HmZFt-Xkt-GLvlsODAy_t20fZhkUHGp1mCgDM246DKFCpRnh97SGUF8pJdxdgCcC4kzNjbyu0oRErWOHRoKBkDutj40ONovUvQYfcTbUx8k8Qx0Gi-qE5oP3hHbrTYJYE63B_ha3bRYBfp5q_O2efz08fyNV2_v6yWj-vUFLkaU6oNlRuBQCVCVZg8hwblRplCyZqKDKtNUYvGCJkrKfOmUgIUYZXlEqddk8_Z3enuEPz3luKoexsNdR068tuoMyG54lVRignlJ9QEH2OgRg_B9hh-NAd9EKdbPYnTB3H6JG7KPJwyNP2wsxR0NJacodoGMqOuvf0n_QvcuneT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571918465</pqid></control><display><type>article</type><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</creator><creatorcontrib>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</creatorcontrib><description>[Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described. We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I&gt;1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2021.107050</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Distribution ; Inhomogeneity ; Inverse laplace transform ; Spin lattice relaxation</subject><ispartof>Journal of magnetic resonance (1997), 2021-10, Vol.331, p.107050-107050, Article 107050</ispartof><rights>2021 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</citedby><cites>FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2021.107050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Vinograd, I.</creatorcontrib><creatorcontrib>Chaffey, C.</creatorcontrib><creatorcontrib>Curro, N.J.</creatorcontrib><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><title>Journal of magnetic resonance (1997)</title><description>[Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described. We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I&gt;1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</description><subject>Distribution</subject><subject>Inhomogeneity</subject><subject>Inverse laplace transform</subject><subject>Spin lattice relaxation</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1yKXDaZumESc08TExiQucIy91Rao2KUk3jX9Pt3HmZFt-Xkt-GLvlsODAy_t20fZhkUHGp1mCgDM246DKFCpRnh97SGUF8pJdxdgCcC4kzNjbyu0oRErWOHRoKBkDutj40ONovUvQYfcTbUx8k8Qx0Gi-qE5oP3hHbrTYJYE63B_ha3bRYBfp5q_O2efz08fyNV2_v6yWj-vUFLkaU6oNlRuBQCVCVZg8hwblRplCyZqKDKtNUYvGCJkrKfOmUgIUYZXlEqddk8_Z3enuEPz3luKoexsNdR068tuoMyG54lVRignlJ9QEH2OgRg_B9hh-NAd9EKdbPYnTB3H6JG7KPJwyNP2wsxR0NJacodoGMqOuvf0n_QvcuneT</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Choi, H.</creator><creator>Vinograd, I.</creator><creator>Chaffey, C.</creator><creator>Curro, N.J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202110</creationdate><title>Inverse Laplace transformation analysis of stretched exponential relaxation</title><author>Choi, H. ; Vinograd, I. ; Chaffey, C. ; Curro, N.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-edce6b5a0e6a084c330fa7b9c497de42a8b4d5fc5739773f89509ea8237aa8bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution</topic><topic>Inhomogeneity</topic><topic>Inverse laplace transform</topic><topic>Spin lattice relaxation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, H.</creatorcontrib><creatorcontrib>Vinograd, I.</creatorcontrib><creatorcontrib>Chaffey, C.</creatorcontrib><creatorcontrib>Curro, N.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, H.</au><au>Vinograd, I.</au><au>Chaffey, C.</au><au>Curro, N.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Laplace transformation analysis of stretched exponential relaxation</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><date>2021-10</date><risdate>2021</risdate><volume>331</volume><spage>107050</spage><epage>107050</epage><pages>107050-107050</pages><artnum>107050</artnum><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted] •The Inverse Laplace Transformation provides the distribution of relaxation rates.•Artificial structures can appear in the distribution in the presence of noise.•Distributions for stretched relaxation behavior can be expressed analytically.•Stretched relaxation for higher spin nuclei accurately described. We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis method to extract the distribution of relaxation rates from nuclear magnetic resonance data with stretched exponential relaxation. Stretched-relaxation is a hallmark of a distribution of relaxation rates, and an analytical expression exists for this distribution for the case of a spin-1/2 nucleus. We compare this theoretical distribution with those extracted via the ILT method for several values of the stretching exponent and at different levels of experimental noise. The ILT accurately captures the distributions for β≲0.7, and for signal to noise ratios greater than ∼40; however the ILT distributions tend to introduce artificial oscillatory components. We further use the ILT approach to analyze stretched relaxation for spin I&gt;1/2 and find that the distributions are accurately captured by the theoretical expression for I=1/2. Our results provide a solid foundation to interpret distributions of relaxation rates for general spin I in terms of stretched exponential fits.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jmr.2021.107050</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2021-10, Vol.331, p.107050-107050, Article 107050
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_2571918465
source Access via ScienceDirect (Elsevier)
subjects Distribution
Inhomogeneity
Inverse laplace transform
Spin lattice relaxation
title Inverse Laplace transformation analysis of stretched exponential relaxation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Laplace%20transformation%20analysis%20of%20stretched%20exponential%20relaxation&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Choi,%20H.&rft.date=2021-10&rft.volume=331&rft.spage=107050&rft.epage=107050&rft.pages=107050-107050&rft.artnum=107050&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2021.107050&rft_dat=%3Cproquest_cross%3E2571918465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571918465&rft_id=info:pmid/&rft_els_id=S1090780721001397&rfr_iscdi=true