MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy
•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models....
Gespeichert in:
Veröffentlicht in: | Radiotherapy and oncology 2021-11, Vol.164, p.73-82 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | |
container_start_page | 73 |
container_title | Radiotherapy and oncology |
container_volume | 164 |
creator | Peeken, Jan C. Asadpour, Rebecca Specht, Katja Chen, Eleanor Y. Klymenko, Olena Akinkuoroye, Victor Hippe, Daniel S. Spraker, Matthew B Schaub, Stephanie K. Dapper, Hendrik Knebel, Carolin Mayr, Nina A. Gersing, Alexandra S. Woodruff, Henry C. Lambin, Philippe Nyflot, Matthew J. Combs, Stephanie E. |
description | •Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival.
In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR).
MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as |
doi_str_mv | 10.1016/j.radonc.2021.08.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571917681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167814021067177</els_id><sourcerecordid>2571917681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0AoRy4OYztZOxckVBWoVISE4Gw59mTjVRIH2ynqb-BP49W2HDl5Dt9743mPkDcMagZs__5YR-PCYmsOnNWgauDiGdkxJTsKSsnnZFcwSRVr4IJcpnQEAA5CviQXomlhrwTfkT9fv9_S3iR0lcMpG1pMfZi9TdUa0Xmby2DyGKZw8LayYV4nzFhFTGtYElZ-qUZ_GOmhCLFKYcg0-5S2MptYcHOSe1yKT45ocln02-exWjAYd9zuzZKrPGI068Mr8mIwU8LXj-8V-fnp5sf1F3r37fPt9cc7ahtQmTYdN84x3tpGtAxg3_SoeinY0FnJeKfQOCM6QNM4MIqLtm17yZUaFOfYgrgi786-awy_NkxZzz5ZnCZTPrUlzVvJOib3ihW0OaM2hpQiDnqNfjbxQTPQpxr0UZ9r0KcaNChdaiiyt48btn5G90_0lHsBPpwBLHfee4w62RKSLYlHtFm74P-_4S-7z51k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571917681</pqid></control><display><type>article</type><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</creator><creatorcontrib>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</creatorcontrib><description>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival.
In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR).
MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort.
The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression.
This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</description><identifier>ISSN: 0167-8140</identifier><identifier>EISSN: 1879-0887</identifier><identifier>DOI: 10.1016/j.radonc.2021.08.023</identifier><identifier>PMID: 34506832</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Delta radiomics ; Humans ; Machine Learning ; Magnetic Resonance Imaging ; MRI ; Neoadjuvant radiotherapy ; Neoadjuvant Therapy ; Reproducibility of Results ; Response prediction ; Retrospective Studies ; Sarcoma - diagnostic imaging ; Sarcoma - therapy ; Soft-tissue sarcoma</subject><ispartof>Radiotherapy and oncology, 2021-11, Vol.164, p.73-82</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</citedby><cites>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</cites><orcidid>0000-0003-2427-4404 ; 0000-0001-7911-5123 ; 0000-0003-2679-9853 ; 0000-0002-5148-379X ; 0000-0001-7961-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167814021067177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34506832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Asadpour, Rebecca</creatorcontrib><creatorcontrib>Specht, Katja</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>Klymenko, Olena</creatorcontrib><creatorcontrib>Akinkuoroye, Victor</creatorcontrib><creatorcontrib>Hippe, Daniel S.</creatorcontrib><creatorcontrib>Spraker, Matthew B</creatorcontrib><creatorcontrib>Schaub, Stephanie K.</creatorcontrib><creatorcontrib>Dapper, Hendrik</creatorcontrib><creatorcontrib>Knebel, Carolin</creatorcontrib><creatorcontrib>Mayr, Nina A.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Woodruff, Henry C.</creatorcontrib><creatorcontrib>Lambin, Philippe</creatorcontrib><creatorcontrib>Nyflot, Matthew J.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><title>Radiotherapy and oncology</title><addtitle>Radiother Oncol</addtitle><description>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival.
In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR).
MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort.
The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression.
This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</description><subject>Delta radiomics</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>MRI</subject><subject>Neoadjuvant radiotherapy</subject><subject>Neoadjuvant Therapy</subject><subject>Reproducibility of Results</subject><subject>Response prediction</subject><subject>Retrospective Studies</subject><subject>Sarcoma - diagnostic imaging</subject><subject>Sarcoma - therapy</subject><subject>Soft-tissue sarcoma</subject><issn>0167-8140</issn><issn>1879-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EotvCP0AoRy4OYztZOxckVBWoVISE4Gw59mTjVRIH2ynqb-BP49W2HDl5Dt9743mPkDcMagZs__5YR-PCYmsOnNWgauDiGdkxJTsKSsnnZFcwSRVr4IJcpnQEAA5CviQXomlhrwTfkT9fv9_S3iR0lcMpG1pMfZi9TdUa0Xmby2DyGKZw8LayYV4nzFhFTGtYElZ-qUZ_GOmhCLFKYcg0-5S2MptYcHOSe1yKT45ocln02-exWjAYd9zuzZKrPGI068Mr8mIwU8LXj-8V-fnp5sf1F3r37fPt9cc7ahtQmTYdN84x3tpGtAxg3_SoeinY0FnJeKfQOCM6QNM4MIqLtm17yZUaFOfYgrgi786-awy_NkxZzz5ZnCZTPrUlzVvJOib3ihW0OaM2hpQiDnqNfjbxQTPQpxr0UZ9r0KcaNChdaiiyt48btn5G90_0lHsBPpwBLHfee4w62RKSLYlHtFm74P-_4S-7z51k</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Peeken, Jan C.</creator><creator>Asadpour, Rebecca</creator><creator>Specht, Katja</creator><creator>Chen, Eleanor Y.</creator><creator>Klymenko, Olena</creator><creator>Akinkuoroye, Victor</creator><creator>Hippe, Daniel S.</creator><creator>Spraker, Matthew B</creator><creator>Schaub, Stephanie K.</creator><creator>Dapper, Hendrik</creator><creator>Knebel, Carolin</creator><creator>Mayr, Nina A.</creator><creator>Gersing, Alexandra S.</creator><creator>Woodruff, Henry C.</creator><creator>Lambin, Philippe</creator><creator>Nyflot, Matthew J.</creator><creator>Combs, Stephanie E.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7911-5123</orcidid><orcidid>https://orcid.org/0000-0003-2679-9853</orcidid><orcidid>https://orcid.org/0000-0002-5148-379X</orcidid><orcidid>https://orcid.org/0000-0001-7961-0191</orcidid></search><sort><creationdate>202111</creationdate><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><author>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delta radiomics</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>MRI</topic><topic>Neoadjuvant radiotherapy</topic><topic>Neoadjuvant Therapy</topic><topic>Reproducibility of Results</topic><topic>Response prediction</topic><topic>Retrospective Studies</topic><topic>Sarcoma - diagnostic imaging</topic><topic>Sarcoma - therapy</topic><topic>Soft-tissue sarcoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Asadpour, Rebecca</creatorcontrib><creatorcontrib>Specht, Katja</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>Klymenko, Olena</creatorcontrib><creatorcontrib>Akinkuoroye, Victor</creatorcontrib><creatorcontrib>Hippe, Daniel S.</creatorcontrib><creatorcontrib>Spraker, Matthew B</creatorcontrib><creatorcontrib>Schaub, Stephanie K.</creatorcontrib><creatorcontrib>Dapper, Hendrik</creatorcontrib><creatorcontrib>Knebel, Carolin</creatorcontrib><creatorcontrib>Mayr, Nina A.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Woodruff, Henry C.</creatorcontrib><creatorcontrib>Lambin, Philippe</creatorcontrib><creatorcontrib>Nyflot, Matthew J.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiotherapy and oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peeken, Jan C.</au><au>Asadpour, Rebecca</au><au>Specht, Katja</au><au>Chen, Eleanor Y.</au><au>Klymenko, Olena</au><au>Akinkuoroye, Victor</au><au>Hippe, Daniel S.</au><au>Spraker, Matthew B</au><au>Schaub, Stephanie K.</au><au>Dapper, Hendrik</au><au>Knebel, Carolin</au><au>Mayr, Nina A.</au><au>Gersing, Alexandra S.</au><au>Woodruff, Henry C.</au><au>Lambin, Philippe</au><au>Nyflot, Matthew J.</au><au>Combs, Stephanie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</atitle><jtitle>Radiotherapy and oncology</jtitle><addtitle>Radiother Oncol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>164</volume><spage>73</spage><epage>82</epage><pages>73-82</pages><issn>0167-8140</issn><eissn>1879-0887</eissn><abstract>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival.
In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR).
MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as <5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort.
The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression.
This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34506832</pmid><doi>10.1016/j.radonc.2021.08.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7911-5123</orcidid><orcidid>https://orcid.org/0000-0003-2679-9853</orcidid><orcidid>https://orcid.org/0000-0002-5148-379X</orcidid><orcidid>https://orcid.org/0000-0001-7961-0191</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8140 |
ispartof | Radiotherapy and oncology, 2021-11, Vol.164, p.73-82 |
issn | 0167-8140 1879-0887 |
language | eng |
recordid | cdi_proquest_miscellaneous_2571917681 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Delta radiomics Humans Machine Learning Magnetic Resonance Imaging MRI Neoadjuvant radiotherapy Neoadjuvant Therapy Reproducibility of Results Response prediction Retrospective Studies Sarcoma - diagnostic imaging Sarcoma - therapy Soft-tissue sarcoma |
title | MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-based%20delta-radiomics%20predicts%20pathologic%20complete%20response%20in%20high-grade%20soft-tissue%20sarcoma%20patients%20treated%20with%20neoadjuvant%20therapy&rft.jtitle=Radiotherapy%20and%20oncology&rft.au=Peeken,%20Jan%20C.&rft.date=2021-11&rft.volume=164&rft.spage=73&rft.epage=82&rft.pages=73-82&rft.issn=0167-8140&rft.eissn=1879-0887&rft_id=info:doi/10.1016/j.radonc.2021.08.023&rft_dat=%3Cproquest_cross%3E2571917681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571917681&rft_id=info:pmid/34506832&rft_els_id=S0167814021067177&rfr_iscdi=true |