MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy

•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiotherapy and oncology 2021-11, Vol.164, p.73-82
Hauptverfasser: Peeken, Jan C., Asadpour, Rebecca, Specht, Katja, Chen, Eleanor Y., Klymenko, Olena, Akinkuoroye, Victor, Hippe, Daniel S., Spraker, Matthew B, Schaub, Stephanie K., Dapper, Hendrik, Knebel, Carolin, Mayr, Nina A., Gersing, Alexandra S., Woodruff, Henry C., Lambin, Philippe, Nyflot, Matthew J., Combs, Stephanie E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue
container_start_page 73
container_title Radiotherapy and oncology
container_volume 164
creator Peeken, Jan C.
Asadpour, Rebecca
Specht, Katja
Chen, Eleanor Y.
Klymenko, Olena
Akinkuoroye, Victor
Hippe, Daniel S.
Spraker, Matthew B
Schaub, Stephanie K.
Dapper, Hendrik
Knebel, Carolin
Mayr, Nina A.
Gersing, Alexandra S.
Woodruff, Henry C.
Lambin, Philippe
Nyflot, Matthew J.
Combs, Stephanie E.
description •Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival. In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR). MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as
doi_str_mv 10.1016/j.radonc.2021.08.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2571917681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167814021067177</els_id><sourcerecordid>2571917681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0AoRy4OYztZOxckVBWoVISE4Gw59mTjVRIH2ynqb-BP49W2HDl5Dt9743mPkDcMagZs__5YR-PCYmsOnNWgauDiGdkxJTsKSsnnZFcwSRVr4IJcpnQEAA5CviQXomlhrwTfkT9fv9_S3iR0lcMpG1pMfZi9TdUa0Xmby2DyGKZw8LayYV4nzFhFTGtYElZ-qUZ_GOmhCLFKYcg0-5S2MptYcHOSe1yKT45ocln02-exWjAYd9zuzZKrPGI068Mr8mIwU8LXj-8V-fnp5sf1F3r37fPt9cc7ahtQmTYdN84x3tpGtAxg3_SoeinY0FnJeKfQOCM6QNM4MIqLtm17yZUaFOfYgrgi786-awy_NkxZzz5ZnCZTPrUlzVvJOib3ihW0OaM2hpQiDnqNfjbxQTPQpxr0UZ9r0KcaNChdaiiyt48btn5G90_0lHsBPpwBLHfee4w62RKSLYlHtFm74P-_4S-7z51k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2571917681</pqid></control><display><type>article</type><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</creator><creatorcontrib>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</creatorcontrib><description>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival. In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR). MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as &lt;5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort. The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression. This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</description><identifier>ISSN: 0167-8140</identifier><identifier>EISSN: 1879-0887</identifier><identifier>DOI: 10.1016/j.radonc.2021.08.023</identifier><identifier>PMID: 34506832</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Delta radiomics ; Humans ; Machine Learning ; Magnetic Resonance Imaging ; MRI ; Neoadjuvant radiotherapy ; Neoadjuvant Therapy ; Reproducibility of Results ; Response prediction ; Retrospective Studies ; Sarcoma - diagnostic imaging ; Sarcoma - therapy ; Soft-tissue sarcoma</subject><ispartof>Radiotherapy and oncology, 2021-11, Vol.164, p.73-82</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</citedby><cites>FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</cites><orcidid>0000-0003-2427-4404 ; 0000-0001-7911-5123 ; 0000-0003-2679-9853 ; 0000-0002-5148-379X ; 0000-0001-7961-0191</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167814021067177$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34506832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Asadpour, Rebecca</creatorcontrib><creatorcontrib>Specht, Katja</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>Klymenko, Olena</creatorcontrib><creatorcontrib>Akinkuoroye, Victor</creatorcontrib><creatorcontrib>Hippe, Daniel S.</creatorcontrib><creatorcontrib>Spraker, Matthew B</creatorcontrib><creatorcontrib>Schaub, Stephanie K.</creatorcontrib><creatorcontrib>Dapper, Hendrik</creatorcontrib><creatorcontrib>Knebel, Carolin</creatorcontrib><creatorcontrib>Mayr, Nina A.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Woodruff, Henry C.</creatorcontrib><creatorcontrib>Lambin, Philippe</creatorcontrib><creatorcontrib>Nyflot, Matthew J.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><title>Radiotherapy and oncology</title><addtitle>Radiother Oncol</addtitle><description>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival. In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR). MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as &lt;5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort. The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression. This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</description><subject>Delta radiomics</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging</subject><subject>MRI</subject><subject>Neoadjuvant radiotherapy</subject><subject>Neoadjuvant Therapy</subject><subject>Reproducibility of Results</subject><subject>Response prediction</subject><subject>Retrospective Studies</subject><subject>Sarcoma - diagnostic imaging</subject><subject>Sarcoma - therapy</subject><subject>Soft-tissue sarcoma</subject><issn>0167-8140</issn><issn>1879-0887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS0EotvCP0AoRy4OYztZOxckVBWoVISE4Gw59mTjVRIH2ynqb-BP49W2HDl5Dt9743mPkDcMagZs__5YR-PCYmsOnNWgauDiGdkxJTsKSsnnZFcwSRVr4IJcpnQEAA5CviQXomlhrwTfkT9fv9_S3iR0lcMpG1pMfZi9TdUa0Xmby2DyGKZw8LayYV4nzFhFTGtYElZ-qUZ_GOmhCLFKYcg0-5S2MptYcHOSe1yKT45ocln02-exWjAYd9zuzZKrPGI068Mr8mIwU8LXj-8V-fnp5sf1F3r37fPt9cc7ahtQmTYdN84x3tpGtAxg3_SoeinY0FnJeKfQOCM6QNM4MIqLtm17yZUaFOfYgrgi786-awy_NkxZzz5ZnCZTPrUlzVvJOib3ihW0OaM2hpQiDnqNfjbxQTPQpxr0UZ9r0KcaNChdaiiyt48btn5G90_0lHsBPpwBLHfee4w62RKSLYlHtFm74P-_4S-7z51k</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Peeken, Jan C.</creator><creator>Asadpour, Rebecca</creator><creator>Specht, Katja</creator><creator>Chen, Eleanor Y.</creator><creator>Klymenko, Olena</creator><creator>Akinkuoroye, Victor</creator><creator>Hippe, Daniel S.</creator><creator>Spraker, Matthew B</creator><creator>Schaub, Stephanie K.</creator><creator>Dapper, Hendrik</creator><creator>Knebel, Carolin</creator><creator>Mayr, Nina A.</creator><creator>Gersing, Alexandra S.</creator><creator>Woodruff, Henry C.</creator><creator>Lambin, Philippe</creator><creator>Nyflot, Matthew J.</creator><creator>Combs, Stephanie E.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7911-5123</orcidid><orcidid>https://orcid.org/0000-0003-2679-9853</orcidid><orcidid>https://orcid.org/0000-0002-5148-379X</orcidid><orcidid>https://orcid.org/0000-0001-7961-0191</orcidid></search><sort><creationdate>202111</creationdate><title>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</title><author>Peeken, Jan C. ; Asadpour, Rebecca ; Specht, Katja ; Chen, Eleanor Y. ; Klymenko, Olena ; Akinkuoroye, Victor ; Hippe, Daniel S. ; Spraker, Matthew B ; Schaub, Stephanie K. ; Dapper, Hendrik ; Knebel, Carolin ; Mayr, Nina A. ; Gersing, Alexandra S. ; Woodruff, Henry C. ; Lambin, Philippe ; Nyflot, Matthew J. ; Combs, Stephanie E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-492add125c43510064be8b731f9c71298eada390ea4d0a823555b7288f822e503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delta radiomics</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging</topic><topic>MRI</topic><topic>Neoadjuvant radiotherapy</topic><topic>Neoadjuvant Therapy</topic><topic>Reproducibility of Results</topic><topic>Response prediction</topic><topic>Retrospective Studies</topic><topic>Sarcoma - diagnostic imaging</topic><topic>Sarcoma - therapy</topic><topic>Soft-tissue sarcoma</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peeken, Jan C.</creatorcontrib><creatorcontrib>Asadpour, Rebecca</creatorcontrib><creatorcontrib>Specht, Katja</creatorcontrib><creatorcontrib>Chen, Eleanor Y.</creatorcontrib><creatorcontrib>Klymenko, Olena</creatorcontrib><creatorcontrib>Akinkuoroye, Victor</creatorcontrib><creatorcontrib>Hippe, Daniel S.</creatorcontrib><creatorcontrib>Spraker, Matthew B</creatorcontrib><creatorcontrib>Schaub, Stephanie K.</creatorcontrib><creatorcontrib>Dapper, Hendrik</creatorcontrib><creatorcontrib>Knebel, Carolin</creatorcontrib><creatorcontrib>Mayr, Nina A.</creatorcontrib><creatorcontrib>Gersing, Alexandra S.</creatorcontrib><creatorcontrib>Woodruff, Henry C.</creatorcontrib><creatorcontrib>Lambin, Philippe</creatorcontrib><creatorcontrib>Nyflot, Matthew J.</creatorcontrib><creatorcontrib>Combs, Stephanie E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Radiotherapy and oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peeken, Jan C.</au><au>Asadpour, Rebecca</au><au>Specht, Katja</au><au>Chen, Eleanor Y.</au><au>Klymenko, Olena</au><au>Akinkuoroye, Victor</au><au>Hippe, Daniel S.</au><au>Spraker, Matthew B</au><au>Schaub, Stephanie K.</au><au>Dapper, Hendrik</au><au>Knebel, Carolin</au><au>Mayr, Nina A.</au><au>Gersing, Alexandra S.</au><au>Woodruff, Henry C.</au><au>Lambin, Philippe</au><au>Nyflot, Matthew J.</au><au>Combs, Stephanie E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy</atitle><jtitle>Radiotherapy and oncology</jtitle><addtitle>Radiother Oncol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>164</volume><spage>73</spage><epage>82</epage><pages>73-82</pages><issn>0167-8140</issn><eissn>1879-0887</eissn><abstract>•Delta-radiomics predicts pathological complete response to neoadjuvant therapy.•Delta-radiomic models were superior to tumor volume and RECIST.•Delta-radiomic models predicted response to chemotherapy and radiotherapy.•Delta-radiomic models were superior to pre- or post-therapeutic radiomic models.•Delta-radiomic predictors may be associated with overall survival. In high-grade soft-tissue sarcomas (STS) the standard of care encompasses multimodal therapy regimens. While there is a growing body of evidence for prognostic pretreatment radiomic models, we hypothesized that temporal changes in radiomic features following neoadjuvant treatment (“delta-radiomics”) may be able to predict the pathological complete response (pCR). MRI scans (T1-weighted with fat-saturation and contrast-enhancement (T1FSGd) and T2-weighted with fat-saturation (T2FS)) of patients with STS of the extremities and trunk treated with neoadjuvant therapy were gathered from two independent institutions (training: 103, external testing: 53 patients). pCR was defined as &lt;5% viable cells. After segmentation and preprocessing, 105 radiomic features were extracted. Delta-radiomic features were calculated by subtraction of features derived from MRI scans obtained before and after neoadjuvant therapy. After feature reduction, machine learning modeling was performed in 100 iterations of 3-fold nested cross-validation. Delta-radiomic models were compared with single timepoint models in the testing cohort. The combined delta-radiomic models achieved the best area under the receiver operating characteristic curve (AUC) of 0.75. Pre-therapeutic tumor volume was the best conventional predictor (AUC 0.70). The T2FS-based delta-radiomic model had the most balanced classification performance with a balanced accuracy of 0.69. Delta-radiomic models achieved better reproducibility than single timepoint radiomic models, RECIST or the peri-therapeutic volume change. Delta-radiomic models were significantly associated with survival in multivariate Cox regression. This exploratory analysis demonstrated that MRI-based delta-radiomics improves prediction of pCR over tumor volume and RECIST. Delta-radiomics may one day function as a biomarker for personalized treatment adaptations.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34506832</pmid><doi>10.1016/j.radonc.2021.08.023</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2427-4404</orcidid><orcidid>https://orcid.org/0000-0001-7911-5123</orcidid><orcidid>https://orcid.org/0000-0003-2679-9853</orcidid><orcidid>https://orcid.org/0000-0002-5148-379X</orcidid><orcidid>https://orcid.org/0000-0001-7961-0191</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8140
ispartof Radiotherapy and oncology, 2021-11, Vol.164, p.73-82
issn 0167-8140
1879-0887
language eng
recordid cdi_proquest_miscellaneous_2571917681
source MEDLINE; Elsevier ScienceDirect Journals
subjects Delta radiomics
Humans
Machine Learning
Magnetic Resonance Imaging
MRI
Neoadjuvant radiotherapy
Neoadjuvant Therapy
Reproducibility of Results
Response prediction
Retrospective Studies
Sarcoma - diagnostic imaging
Sarcoma - therapy
Soft-tissue sarcoma
title MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRI-based%20delta-radiomics%20predicts%20pathologic%20complete%20response%20in%20high-grade%20soft-tissue%20sarcoma%20patients%20treated%20with%20neoadjuvant%20therapy&rft.jtitle=Radiotherapy%20and%20oncology&rft.au=Peeken,%20Jan%20C.&rft.date=2021-11&rft.volume=164&rft.spage=73&rft.epage=82&rft.pages=73-82&rft.issn=0167-8140&rft.eissn=1879-0887&rft_id=info:doi/10.1016/j.radonc.2021.08.023&rft_dat=%3Cproquest_cross%3E2571917681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2571917681&rft_id=info:pmid/34506832&rft_els_id=S0167814021067177&rfr_iscdi=true