Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations

A dynamic nonlinear theory for laminated spherical caps is developed with the use of Hamilton's principle. The effects of shear deformation, rotatory inertia, geometrically initial imperfection and elastic foundation are included in the analysis. The governing equations are expressed in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanical sciences 1992, Vol.34 (6), p.459-474
1. Verfasser: Xu, Changshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 6
container_start_page 459
container_title International journal of mechanical sciences
container_volume 34
creator Xu, Changshi
description A dynamic nonlinear theory for laminated spherical caps is developed with the use of Hamilton's principle. The effects of shear deformation, rotatory inertia, geometrically initial imperfection and elastic foundation are included in the analysis. The governing equations are expressed in terms of the transverse displacement, stress function and rotation. The solution of a multi-mode Fourier-Bessel series is formulated for the nonlinear flexural free vibration of symmetrically laminated moderately thick spherical caps with flexible supports. The resulting equations for time functions are solved by the method of harmonic balance. The corresponding large deflection problem is treated as a special case. The effects of geometric imperfections and of the elastic foundation are investigated. Numerical results are compared with available data.
doi_str_mv 10.1016/0020-7403(92)90012-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25715634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0020740392900126</els_id><sourcerecordid>25715634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-9564b6615b8da9a852e968cb395171fea53396c7566c1468d84a241fbe8110063</originalsourceid><addsrcrecordid>eNqNkcGOFCEQhonRxHH1DTxwMEYPvVJ0QzcXE7NZdZM1XvRMaCgUQ0MLPZvMxWeXmdns0Xgiga9-qr4i5CWwS2Ag3zHGWTcOrH-j-FvFGPBOPiI7mEbVcZD8Mdk9IE_Js1p_NWZkot-RP1_2cQvdkh3SlFMMCU2hd2EuZgs5UZMcjab8QOrQR7Sny-xpPSwLbiVYE-OhEUtIZkNHw7Ji8Y2jdf2Jp3dqzVppK8No6hYs9Xmf3Cm-PidPvIkVX9yfF-T7x-tvV5-726-fbq4-3Ha2B7Z1SshhlhLEPDmjzCQ4KjnZuVcCRvBoRN8raUchpYVBTm4aDB_AzzgBMCb7C_L6nLuW_HuPddNLqBZjNAnzvmouRhCyH_4LHCYGDRzOoC251oJeryUsphw0MH3cij4q10flWnF92oo-NvLqPt_U5sYXk2yoD7WijdGGbdj7M4ZNyl3AoqsNmCy6UJpc7XL49z9_AcKGodM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25714801</pqid></control><display><type>article</type><title>Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Changshi</creator><creatorcontrib>Xu, Changshi</creatorcontrib><description>A dynamic nonlinear theory for laminated spherical caps is developed with the use of Hamilton's principle. The effects of shear deformation, rotatory inertia, geometrically initial imperfection and elastic foundation are included in the analysis. The governing equations are expressed in terms of the transverse displacement, stress function and rotation. The solution of a multi-mode Fourier-Bessel series is formulated for the nonlinear flexural free vibration of symmetrically laminated moderately thick spherical caps with flexible supports. The resulting equations for time functions are solved by the method of harmonic balance. The corresponding large deflection problem is treated as a special case. The effects of geometric imperfections and of the elastic foundation are investigated. Numerical results are compared with available data.</description><identifier>ISSN: 0020-7403</identifier><identifier>EISSN: 1879-2162</identifier><identifier>DOI: 10.1016/0020-7403(92)90012-6</identifier><identifier>CODEN: IMSCAW</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>International journal of mechanical sciences, 1992, Vol.34 (6), p.459-474</ispartof><rights>1992</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-9564b6615b8da9a852e968cb395171fea53396c7566c1468d84a241fbe8110063</citedby><cites>FETCH-LOGICAL-c310t-9564b6615b8da9a852e968cb395171fea53396c7566c1468d84a241fbe8110063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0020740392900126$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5396956$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Changshi</creatorcontrib><title>Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations</title><title>International journal of mechanical sciences</title><description>A dynamic nonlinear theory for laminated spherical caps is developed with the use of Hamilton's principle. The effects of shear deformation, rotatory inertia, geometrically initial imperfection and elastic foundation are included in the analysis. The governing equations are expressed in terms of the transverse displacement, stress function and rotation. The solution of a multi-mode Fourier-Bessel series is formulated for the nonlinear flexural free vibration of symmetrically laminated moderately thick spherical caps with flexible supports. The resulting equations for time functions are solved by the method of harmonic balance. The corresponding large deflection problem is treated as a special case. The effects of geometric imperfections and of the elastic foundation are investigated. Numerical results are compared with available data.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0020-7403</issn><issn>1879-2162</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqNkcGOFCEQhonRxHH1DTxwMEYPvVJ0QzcXE7NZdZM1XvRMaCgUQ0MLPZvMxWeXmdns0Xgiga9-qr4i5CWwS2Ag3zHGWTcOrH-j-FvFGPBOPiI7mEbVcZD8Mdk9IE_Js1p_NWZkot-RP1_2cQvdkh3SlFMMCU2hd2EuZgs5UZMcjab8QOrQR7Sny-xpPSwLbiVYE-OhEUtIZkNHw7Ji8Y2jdf2Jp3dqzVppK8No6hYs9Xmf3Cm-PidPvIkVX9yfF-T7x-tvV5-726-fbq4-3Ha2B7Z1SshhlhLEPDmjzCQ4KjnZuVcCRvBoRN8raUchpYVBTm4aDB_AzzgBMCb7C_L6nLuW_HuPddNLqBZjNAnzvmouRhCyH_4LHCYGDRzOoC251oJeryUsphw0MH3cij4q10flWnF92oo-NvLqPt_U5sYXk2yoD7WijdGGbdj7M4ZNyl3AoqsNmCy6UJpc7XL49z9_AcKGodM</recordid><startdate>1992</startdate><enddate>1992</enddate><creator>Xu, Changshi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1992</creationdate><title>Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations</title><author>Xu, Changshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-9564b6615b8da9a852e968cb395171fea53396c7566c1468d84a241fbe8110063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Changshi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of mechanical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Changshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations</atitle><jtitle>International journal of mechanical sciences</jtitle><date>1992</date><risdate>1992</risdate><volume>34</volume><issue>6</issue><spage>459</spage><epage>474</epage><pages>459-474</pages><issn>0020-7403</issn><eissn>1879-2162</eissn><coden>IMSCAW</coden><abstract>A dynamic nonlinear theory for laminated spherical caps is developed with the use of Hamilton's principle. The effects of shear deformation, rotatory inertia, geometrically initial imperfection and elastic foundation are included in the analysis. The governing equations are expressed in terms of the transverse displacement, stress function and rotation. The solution of a multi-mode Fourier-Bessel series is formulated for the nonlinear flexural free vibration of symmetrically laminated moderately thick spherical caps with flexible supports. The resulting equations for time functions are solved by the method of harmonic balance. The corresponding large deflection problem is treated as a special case. The effects of geometric imperfections and of the elastic foundation are investigated. Numerical results are compared with available data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0020-7403(92)90012-6</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7403
ispartof International journal of mechanical sciences, 1992, Vol.34 (6), p.459-474
issn 0020-7403
1879-2162
language eng
recordid cdi_proquest_miscellaneous_25715634
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Multi-mode nonlinear vibration and large deflection of symmetrically laminated imperfect spherical caps on elastic foundations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-mode%20nonlinear%20vibration%20and%20large%20deflection%20of%20symmetrically%20laminated%20imperfect%20spherical%20caps%20on%20elastic%20foundations&rft.jtitle=International%20journal%20of%20mechanical%20sciences&rft.au=Xu,%20Changshi&rft.date=1992&rft.volume=34&rft.issue=6&rft.spage=459&rft.epage=474&rft.pages=459-474&rft.issn=0020-7403&rft.eissn=1879-2162&rft.coden=IMSCAW&rft_id=info:doi/10.1016/0020-7403(92)90012-6&rft_dat=%3Cproquest_cross%3E25715634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25714801&rft_id=info:pmid/&rft_els_id=0020740392900126&rfr_iscdi=true