Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 1992-11, Vol.35 (11), p.2783-2794 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2794 |
---|---|
container_issue | 11 |
container_start_page | 2783 |
container_title | International journal of heat and mass transfer |
container_volume | 35 |
creator | Demuren, A. O. |
description | A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses. |
doi_str_mv | 10.1016/0017-9310(92)90299-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25712149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25712149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-gz3kIKKHaqZJm-QofsOKFz2HNE2lSzZZkxTx39vuLnsaBp73ZeZBaAHkFgjUd4QALyQFci3LG0lKKQtxhGYguCxKEPIYzQ7IKTpLaTWthNUzpN4Hl_vv2LdYG2OdjTr3wWPtW5yH2AzOemPxOrTWJdyFiE1Yb4a8pRIOHaaPBzDjlc0J9x6bGFLqXPg9Ryeddsle7OccfT0_fT68FsuPl7eH-2VhSlblAmyjCVhGOBjJqxbqDlrCRGu5HVfd1oZa1nHWiqaiDGrWGFJxoUfcMA50jq52vZsYfgabslr3afzHaW_DkFRZcSiByRFkO3B7YrSd2sR-reOfAqImm2pyoyZVSpZqa1OJMXa579fJaNdF7U2fDlnGRF1yNmKLHeZ10srnmBRISQmhjFeM_gOXpH48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25712149</pqid></control><display><type>article</type><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Demuren, A. O.</creator><creatorcontrib>Demuren, A. O.</creatorcontrib><description>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/0017-9310(92)90299-8</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fluid Mechanics And Heat Transfer ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 1992-11, Vol.35 (11), p.2783-2794</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</citedby><cites>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4486274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Demuren, A. O.</creatorcontrib><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><title>International journal of heat and mass transfer</title><description>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid Mechanics And Heat Transfer</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNo9kE1LxDAQhoMouK7-gz3kIKKHaqZJm-QofsOKFz2HNE2lSzZZkxTx39vuLnsaBp73ZeZBaAHkFgjUd4QALyQFci3LG0lKKQtxhGYguCxKEPIYzQ7IKTpLaTWthNUzpN4Hl_vv2LdYG2OdjTr3wWPtW5yH2AzOemPxOrTWJdyFiE1Yb4a8pRIOHaaPBzDjlc0J9x6bGFLqXPg9Ryeddsle7OccfT0_fT68FsuPl7eH-2VhSlblAmyjCVhGOBjJqxbqDlrCRGu5HVfd1oZa1nHWiqaiDGrWGFJxoUfcMA50jq52vZsYfgabslr3afzHaW_DkFRZcSiByRFkO3B7YrSd2sR-reOfAqImm2pyoyZVSpZqa1OJMXa579fJaNdF7U2fDlnGRF1yNmKLHeZ10srnmBRISQmhjFeM_gOXpH48</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Demuren, A. O.</creator><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19921101</creationdate><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><author>Demuren, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid Mechanics And Heat Transfer</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demuren, A. O.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demuren, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>35</volume><issue>11</issue><spage>2783</spage><epage>2794</epage><pages>2783-2794</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</abstract><cop>Legacy CDMS</cop><pub>Elsevier</pub><doi>10.1016/0017-9310(92)90299-8</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 1992-11, Vol.35 (11), p.2783-2794 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_25712149 |
source | Elsevier ScienceDirect Journals; NASA Technical Reports Server |
subjects | Exact sciences and technology Fluid dynamics Fluid Mechanics And Heat Transfer Fundamental areas of phenomenology (including applications) Physics Turbulent flows, convection, and heat transfer |
title | Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20acceleration%20and%20turbulence%20models%20for%20computations%20of%203D%20turbulent%20jets%20in%20crossflow&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Demuren,%20A.%20O.&rft.date=1992-11-01&rft.volume=35&rft.issue=11&rft.spage=2783&rft.epage=2794&rft.pages=2783-2794&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/0017-9310(92)90299-8&rft_dat=%3Cproquest_cross%3E25712149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25712149&rft_id=info:pmid/&rfr_iscdi=true |