Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 1992-11, Vol.35 (11), p.2783-2794
1. Verfasser: Demuren, A. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2794
container_issue 11
container_start_page 2783
container_title International journal of heat and mass transfer
container_volume 35
creator Demuren, A. O.
description A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.
doi_str_mv 10.1016/0017-9310(92)90299-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25712149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25712149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMouK7-gz3kIKKHaqZJm-QofsOKFz2HNE2lSzZZkxTx39vuLnsaBp73ZeZBaAHkFgjUd4QALyQFci3LG0lKKQtxhGYguCxKEPIYzQ7IKTpLaTWthNUzpN4Hl_vv2LdYG2OdjTr3wWPtW5yH2AzOemPxOrTWJdyFiE1Yb4a8pRIOHaaPBzDjlc0J9x6bGFLqXPg9Ryeddsle7OccfT0_fT68FsuPl7eH-2VhSlblAmyjCVhGOBjJqxbqDlrCRGu5HVfd1oZa1nHWiqaiDGrWGFJxoUfcMA50jq52vZsYfgabslr3afzHaW_DkFRZcSiByRFkO3B7YrSd2sR-reOfAqImm2pyoyZVSpZqa1OJMXa579fJaNdF7U2fDlnGRF1yNmKLHeZ10srnmBRISQmhjFeM_gOXpH48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25712149</pqid></control><display><type>article</type><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><source>Elsevier ScienceDirect Journals</source><source>NASA Technical Reports Server</source><creator>Demuren, A. O.</creator><creatorcontrib>Demuren, A. O.</creatorcontrib><description>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/0017-9310(92)90299-8</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Legacy CDMS: Elsevier</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fluid Mechanics And Heat Transfer ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulent flows, convection, and heat transfer</subject><ispartof>International journal of heat and mass transfer, 1992-11, Vol.35 (11), p.2783-2794</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</citedby><cites>FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4486274$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Demuren, A. O.</creatorcontrib><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><title>International journal of heat and mass transfer</title><description>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid Mechanics And Heat Transfer</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNo9kE1LxDAQhoMouK7-gz3kIKKHaqZJm-QofsOKFz2HNE2lSzZZkxTx39vuLnsaBp73ZeZBaAHkFgjUd4QALyQFci3LG0lKKQtxhGYguCxKEPIYzQ7IKTpLaTWthNUzpN4Hl_vv2LdYG2OdjTr3wWPtW5yH2AzOemPxOrTWJdyFiE1Yb4a8pRIOHaaPBzDjlc0J9x6bGFLqXPg9Ryeddsle7OccfT0_fT68FsuPl7eH-2VhSlblAmyjCVhGOBjJqxbqDlrCRGu5HVfd1oZa1nHWiqaiDGrWGFJxoUfcMA50jq52vZsYfgabslr3afzHaW_DkFRZcSiByRFkO3B7YrSd2sR-reOfAqImm2pyoyZVSpZqa1OJMXa579fJaNdF7U2fDlnGRF1yNmKLHeZ10srnmBRISQmhjFeM_gOXpH48</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>Demuren, A. O.</creator><general>Elsevier</general><scope>CYE</scope><scope>CYI</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19921101</creationdate><title>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</title><author>Demuren, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-1eba01e4071c975d16f1d048de7e75dad6c3e4f74d8b534164bc0578a1c9c4713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid Mechanics And Heat Transfer</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demuren, A. O.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demuren, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>35</volume><issue>11</issue><spage>2783</spage><epage>2794</epage><pages>2783-2794</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.</abstract><cop>Legacy CDMS</cop><pub>Elsevier</pub><doi>10.1016/0017-9310(92)90299-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 1992-11, Vol.35 (11), p.2783-2794
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_25712149
source Elsevier ScienceDirect Journals; NASA Technical Reports Server
subjects Exact sciences and technology
Fluid dynamics
Fluid Mechanics And Heat Transfer
Fundamental areas of phenomenology (including applications)
Physics
Turbulent flows, convection, and heat transfer
title Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A50%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multigrid%20acceleration%20and%20turbulence%20models%20for%20computations%20of%203D%20turbulent%20jets%20in%20crossflow&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Demuren,%20A.%20O.&rft.date=1992-11-01&rft.volume=35&rft.issue=11&rft.spage=2783&rft.epage=2794&rft.pages=2783-2794&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/0017-9310(92)90299-8&rft_dat=%3Cproquest_cross%3E25712149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25712149&rft_id=info:pmid/&rfr_iscdi=true