Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model
Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol wa...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2021-10, Vol.17 (10), p.6570-6582 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6582 |
---|---|
container_issue | 10 |
container_start_page | 6570 |
container_title | Journal of chemical theory and computation |
container_volume | 17 |
creator | Carvalho, Henrique F Ferrario, Valerio Pleiss, Jürgen |
description | Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information. |
doi_str_mv | 10.1021/acs.jctc.1c00559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2570371921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570371921</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS1ERUvbOydkiQsHsvW_xHFvywJtpa56aHuOJo7NenHiEidI4SPwqXG62yJV4uLxjH7vjUYPoXeULChh9Ax0XGz1oBdUE5Ln6hU6orlQmSpY8fr5T8tD9DbGLSGcC8bfoEMuhBKlKI7Qn3XwRo8eerw2egOdiy0ONjVDaoLHV93G1W5wocOuw6vl9edsBQP46bdp8NLrsAl-ii6e42U3T133Hf_z_DJ10Dod8a1r02C2ibieMOA19D_CL3w7wGCSoDH-BB1Y8NGc7usxuv_29W51mV3fXFylxRnwQgxZXivLCiNk0SigtKmNolQwCio9VnLCtZZa0bwQjSSgBVfWSmMMSGNpafkx-rjzfejDz9HEoWpd1MZ76EwYY8VySbikitGEfniBbsPYpztnqmQlZyqXiSI7Svchxt7Y6qF3LfRTRUk151SlnKo5p2qfU5K83xuPdWuaZ8FTMAn4tAMepU9L_-v3F-_Qn7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582832957</pqid></control><display><type>article</type><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><source>MEDLINE</source><source>ACS Publications</source><creator>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</creator><creatorcontrib>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</creatorcontrib><description>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00559</identifier><identifier>PMID: 34494846</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Biomolecular Systems ; Catalysis ; Esters ; Ethanol ; Ethanol - chemistry ; Fatty acids ; Fungal Proteins - antagonists & inhibitors ; Fungal Proteins - chemistry ; Lipase - antagonists & inhibitors ; Lipase - chemistry ; Methanol ; Molecular dynamics ; Molecular Dynamics Simulation ; Simulation ; Structural analysis ; Substrate inhibition</subject><ispartof>Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6570-6582</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 12, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</citedby><cites>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</cites><orcidid>0000-0001-8809-1856 ; 0000-0003-1045-8202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.1c00559$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.1c00559$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34494846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Henrique F</creatorcontrib><creatorcontrib>Ferrario, Valerio</creatorcontrib><creatorcontrib>Pleiss, Jürgen</creatorcontrib><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</description><subject>Binding</subject><subject>Biomolecular Systems</subject><subject>Catalysis</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fatty acids</subject><subject>Fungal Proteins - antagonists & inhibitors</subject><subject>Fungal Proteins - chemistry</subject><subject>Lipase - antagonists & inhibitors</subject><subject>Lipase - chemistry</subject><subject>Methanol</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Simulation</subject><subject>Structural analysis</subject><subject>Substrate inhibition</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS1ERUvbOydkiQsHsvW_xHFvywJtpa56aHuOJo7NenHiEidI4SPwqXG62yJV4uLxjH7vjUYPoXeULChh9Ax0XGz1oBdUE5Ln6hU6orlQmSpY8fr5T8tD9DbGLSGcC8bfoEMuhBKlKI7Qn3XwRo8eerw2egOdiy0ONjVDaoLHV93G1W5wocOuw6vl9edsBQP46bdp8NLrsAl-ii6e42U3T133Hf_z_DJ10Dod8a1r02C2ibieMOA19D_CL3w7wGCSoDH-BB1Y8NGc7usxuv_29W51mV3fXFylxRnwQgxZXivLCiNk0SigtKmNolQwCio9VnLCtZZa0bwQjSSgBVfWSmMMSGNpafkx-rjzfejDz9HEoWpd1MZ76EwYY8VySbikitGEfniBbsPYpztnqmQlZyqXiSI7Svchxt7Y6qF3LfRTRUk151SlnKo5p2qfU5K83xuPdWuaZ8FTMAn4tAMepU9L_-v3F-_Qn7o</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Carvalho, Henrique F</creator><creator>Ferrario, Valerio</creator><creator>Pleiss, Jürgen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8809-1856</orcidid><orcidid>https://orcid.org/0000-0003-1045-8202</orcidid></search><sort><creationdate>20211012</creationdate><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><author>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding</topic><topic>Biomolecular Systems</topic><topic>Catalysis</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fatty acids</topic><topic>Fungal Proteins - antagonists & inhibitors</topic><topic>Fungal Proteins - chemistry</topic><topic>Lipase - antagonists & inhibitors</topic><topic>Lipase - chemistry</topic><topic>Methanol</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Simulation</topic><topic>Structural analysis</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Henrique F</creatorcontrib><creatorcontrib>Ferrario, Valerio</creatorcontrib><creatorcontrib>Pleiss, Jürgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Henrique F</au><au>Ferrario, Valerio</au><au>Pleiss, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-10-12</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6570</spage><epage>6582</epage><pages>6570-6582</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34494846</pmid><doi>10.1021/acs.jctc.1c00559</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8809-1856</orcidid><orcidid>https://orcid.org/0000-0003-1045-8202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9618 |
ispartof | Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6570-6582 |
issn | 1549-9618 1549-9626 |
language | eng |
recordid | cdi_proquest_miscellaneous_2570371921 |
source | MEDLINE; ACS Publications |
subjects | Binding Biomolecular Systems Catalysis Esters Ethanol Ethanol - chemistry Fatty acids Fungal Proteins - antagonists & inhibitors Fungal Proteins - chemistry Lipase - antagonists & inhibitors Lipase - chemistry Methanol Molecular dynamics Molecular Dynamics Simulation Simulation Structural analysis Substrate inhibition |
title | Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20Methanol%20Inhibition%20in%20CALB-Catalyzed%20Alcoholysis:%20Analyzing%20Molecular%20Dynamics%20Simulations%20by%20a%20Markov%20State%20Model&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Carvalho,%20Henrique%20F&rft.date=2021-10-12&rft.volume=17&rft.issue=10&rft.spage=6570&rft.epage=6582&rft.pages=6570-6582&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00559&rft_dat=%3Cproquest_cross%3E2570371921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582832957&rft_id=info:pmid/34494846&rfr_iscdi=true |