Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model

Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2021-10, Vol.17 (10), p.6570-6582
Hauptverfasser: Carvalho, Henrique F, Ferrario, Valerio, Pleiss, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6582
container_issue 10
container_start_page 6570
container_title Journal of chemical theory and computation
container_volume 17
creator Carvalho, Henrique F
Ferrario, Valerio
Pleiss, Jürgen
description Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.
doi_str_mv 10.1021/acs.jctc.1c00559
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2570371921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570371921</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS1ERUvbOydkiQsHsvW_xHFvywJtpa56aHuOJo7NenHiEidI4SPwqXG62yJV4uLxjH7vjUYPoXeULChh9Ax0XGz1oBdUE5Ln6hU6orlQmSpY8fr5T8tD9DbGLSGcC8bfoEMuhBKlKI7Qn3XwRo8eerw2egOdiy0ONjVDaoLHV93G1W5wocOuw6vl9edsBQP46bdp8NLrsAl-ii6e42U3T133Hf_z_DJ10Dod8a1r02C2ibieMOA19D_CL3w7wGCSoDH-BB1Y8NGc7usxuv_29W51mV3fXFylxRnwQgxZXivLCiNk0SigtKmNolQwCio9VnLCtZZa0bwQjSSgBVfWSmMMSGNpafkx-rjzfejDz9HEoWpd1MZ76EwYY8VySbikitGEfniBbsPYpztnqmQlZyqXiSI7Svchxt7Y6qF3LfRTRUk151SlnKo5p2qfU5K83xuPdWuaZ8FTMAn4tAMepU9L_-v3F-_Qn7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582832957</pqid></control><display><type>article</type><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><source>MEDLINE</source><source>ACS Publications</source><creator>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</creator><creatorcontrib>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</creatorcontrib><description>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.1c00559</identifier><identifier>PMID: 34494846</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding ; Biomolecular Systems ; Catalysis ; Esters ; Ethanol ; Ethanol - chemistry ; Fatty acids ; Fungal Proteins - antagonists &amp; inhibitors ; Fungal Proteins - chemistry ; Lipase - antagonists &amp; inhibitors ; Lipase - chemistry ; Methanol ; Molecular dynamics ; Molecular Dynamics Simulation ; Simulation ; Structural analysis ; Substrate inhibition</subject><ispartof>Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6570-6582</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 12, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</citedby><cites>FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</cites><orcidid>0000-0001-8809-1856 ; 0000-0003-1045-8202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.1c00559$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.1c00559$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34494846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carvalho, Henrique F</creatorcontrib><creatorcontrib>Ferrario, Valerio</creatorcontrib><creatorcontrib>Pleiss, Jürgen</creatorcontrib><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</description><subject>Binding</subject><subject>Biomolecular Systems</subject><subject>Catalysis</subject><subject>Esters</subject><subject>Ethanol</subject><subject>Ethanol - chemistry</subject><subject>Fatty acids</subject><subject>Fungal Proteins - antagonists &amp; inhibitors</subject><subject>Fungal Proteins - chemistry</subject><subject>Lipase - antagonists &amp; inhibitors</subject><subject>Lipase - chemistry</subject><subject>Methanol</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Simulation</subject><subject>Structural analysis</subject><subject>Substrate inhibition</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS1ERUvbOydkiQsHsvW_xHFvywJtpa56aHuOJo7NenHiEidI4SPwqXG62yJV4uLxjH7vjUYPoXeULChh9Ax0XGz1oBdUE5Ln6hU6orlQmSpY8fr5T8tD9DbGLSGcC8bfoEMuhBKlKI7Qn3XwRo8eerw2egOdiy0ONjVDaoLHV93G1W5wocOuw6vl9edsBQP46bdp8NLrsAl-ii6e42U3T133Hf_z_DJ10Dod8a1r02C2ibieMOA19D_CL3w7wGCSoDH-BB1Y8NGc7usxuv_29W51mV3fXFylxRnwQgxZXivLCiNk0SigtKmNolQwCio9VnLCtZZa0bwQjSSgBVfWSmMMSGNpafkx-rjzfejDz9HEoWpd1MZ76EwYY8VySbikitGEfniBbsPYpztnqmQlZyqXiSI7Svchxt7Y6qF3LfRTRUk151SlnKo5p2qfU5K83xuPdWuaZ8FTMAn4tAMepU9L_-v3F-_Qn7o</recordid><startdate>20211012</startdate><enddate>20211012</enddate><creator>Carvalho, Henrique F</creator><creator>Ferrario, Valerio</creator><creator>Pleiss, Jürgen</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8809-1856</orcidid><orcidid>https://orcid.org/0000-0003-1045-8202</orcidid></search><sort><creationdate>20211012</creationdate><title>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</title><author>Carvalho, Henrique F ; Ferrario, Valerio ; Pleiss, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-5b9f26e476d9a11dbe911421a9421f7303cc7c91564d70ac439ff7eeea7ef18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binding</topic><topic>Biomolecular Systems</topic><topic>Catalysis</topic><topic>Esters</topic><topic>Ethanol</topic><topic>Ethanol - chemistry</topic><topic>Fatty acids</topic><topic>Fungal Proteins - antagonists &amp; inhibitors</topic><topic>Fungal Proteins - chemistry</topic><topic>Lipase - antagonists &amp; inhibitors</topic><topic>Lipase - chemistry</topic><topic>Methanol</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Simulation</topic><topic>Structural analysis</topic><topic>Substrate inhibition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Henrique F</creatorcontrib><creatorcontrib>Ferrario, Valerio</creatorcontrib><creatorcontrib>Pleiss, Jürgen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Henrique F</au><au>Ferrario, Valerio</au><au>Pleiss, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2021-10-12</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>6570</spage><epage>6582</epage><pages>6570-6582</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4–5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme–substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34494846</pmid><doi>10.1021/acs.jctc.1c00559</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8809-1856</orcidid><orcidid>https://orcid.org/0000-0003-1045-8202</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2021-10, Vol.17 (10), p.6570-6582
issn 1549-9618
1549-9626
language eng
recordid cdi_proquest_miscellaneous_2570371921
source MEDLINE; ACS Publications
subjects Binding
Biomolecular Systems
Catalysis
Esters
Ethanol
Ethanol - chemistry
Fatty acids
Fungal Proteins - antagonists & inhibitors
Fungal Proteins - chemistry
Lipase - antagonists & inhibitors
Lipase - chemistry
Methanol
Molecular dynamics
Molecular Dynamics Simulation
Simulation
Structural analysis
Substrate inhibition
title Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Mechanism%20of%20Methanol%20Inhibition%20in%20CALB-Catalyzed%20Alcoholysis:%20Analyzing%20Molecular%20Dynamics%20Simulations%20by%20a%20Markov%20State%20Model&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Carvalho,%20Henrique%20F&rft.date=2021-10-12&rft.volume=17&rft.issue=10&rft.spage=6570&rft.epage=6582&rft.pages=6570-6582&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.1c00559&rft_dat=%3Cproquest_cross%3E2570371921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582832957&rft_id=info:pmid/34494846&rfr_iscdi=true