In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries
The two biggest promises of solid-state lithium (Li) metal batteries (SSLMBs) are the suppression of Li dendrites by solid-state electrolyte (SSE) and the realization of a high-energy-density Li anode. However, LMBs have not met their expectations due to Li dendrite growth causing short-circuiting....
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-12, Vol.15 (12), p.19070-19079 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19079 |
---|---|
container_issue | 12 |
container_start_page | 19070 |
container_title | ACS nano |
container_volume | 15 |
creator | Sun, Haiming Liu, Qiunan Chen, Jingzhao Li, Yanshuai Ye, Hongjun Zhao, Jun Geng, Lin Dai, Qiushi Yang, Tingting Li, Hui Wang, Zaifa Zhang, Liqiang Tang, Yongfu Huang, Jianyu |
description | The two biggest promises of solid-state lithium (Li) metal batteries (SSLMBs) are the suppression of Li dendrites by solid-state electrolyte (SSE) and the realization of a high-energy-density Li anode. However, LMBs have not met their expectations due to Li dendrite growth causing short-circuiting. In fact, Li dendrites grow even more easily in SSE than in liquid electrolyte, but the reason for this remains unclear. Here we report in situ transmission electron microscopy observations of Li dendrite penetration through SSE and "dead" Li formation dynamics in SSLMBs. We show direct evidence that large electrochemomechanical stress generates cracks in the SSE and drives Li through the SSE directly. We revealed that fresh Li nucleation sites emerged in every discharge cycle, creating new "dead" Li in the following charging cycle and becoming the dominant Coulombic efficiency decay mechanism in SSLMBs. These results indicate that engineering flaw size and reducing electronic conductivity in SSEs are essential to improve the performance of SSLMBs. |
doi_str_mv | 10.1021/acsnano.1c04864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2570371879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570371879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-524ba9166406f3b1c491a77a62bf482b6def5c10400b0f6925f61beb0ff17b983</originalsourceid><addsrcrecordid>eNqN0ctu1DAUBmALgegF1uyQl0gorZ04vixh2kKlqYo0gNhFtnPMGCV2sR1V0xfgtUnJdNas_Mv-zln8RugNJWeU1PRc2xx0iGfUEiY5e4aOqWp4RST_8fyQW3qETnL-RUgrpOAv0VHDmGKS8mP05zrgjS8T_u7zpAf_oIuPAUeH175s_TTiLxCgpOW6bFOcfm7xJg6-x5cD2JLisCuAdejxBej-MHaxC3r0NmMfFl5tip7h0_sNFD3gj7oUSB7yK_TC6SHD6_15ir5dXX5dfa7Wt5-uVx_Wla2VKFVbM6MV5ZwR7hpDLVNUC6F5bRyTteE9uNZSwggxxHFVt45TA3N2VBglm1P0btl7l-LvCXLpRp8tDIMOEKfc1a0gjaBSqJmeL9SmmHMC190lP-q06yjpHtvv9u13-_bnibf75ZMZoT_4p7pn8H4B92Ciy9ZDsHBghBDRUqkInVP9qOX_65Uv__5oFadQmr_zfaSv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570371879</pqid></control><display><type>article</type><title>In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries</title><source>ACS Publications</source><creator>Sun, Haiming ; Liu, Qiunan ; Chen, Jingzhao ; Li, Yanshuai ; Ye, Hongjun ; Zhao, Jun ; Geng, Lin ; Dai, Qiushi ; Yang, Tingting ; Li, Hui ; Wang, Zaifa ; Zhang, Liqiang ; Tang, Yongfu ; Huang, Jianyu</creator><creatorcontrib>Sun, Haiming ; Liu, Qiunan ; Chen, Jingzhao ; Li, Yanshuai ; Ye, Hongjun ; Zhao, Jun ; Geng, Lin ; Dai, Qiushi ; Yang, Tingting ; Li, Hui ; Wang, Zaifa ; Zhang, Liqiang ; Tang, Yongfu ; Huang, Jianyu</creatorcontrib><description>The two biggest promises of solid-state lithium (Li) metal batteries (SSLMBs) are the suppression of Li dendrites by solid-state electrolyte (SSE) and the realization of a high-energy-density Li anode. However, LMBs have not met their expectations due to Li dendrite growth causing short-circuiting. In fact, Li dendrites grow even more easily in SSE than in liquid electrolyte, but the reason for this remains unclear. Here we report in situ transmission electron microscopy observations of Li dendrite penetration through SSE and "dead" Li formation dynamics in SSLMBs. We show direct evidence that large electrochemomechanical stress generates cracks in the SSE and drives Li through the SSE directly. We revealed that fresh Li nucleation sites emerged in every discharge cycle, creating new "dead" Li in the following charging cycle and becoming the dominant Coulombic efficiency decay mechanism in SSLMBs. These results indicate that engineering flaw size and reducing electronic conductivity in SSEs are essential to improve the performance of SSLMBs.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c04864</identifier><identifier>PMID: 34494816</identifier><language>eng</language><publisher>WASHINGTON: Amer Chemical Soc</publisher><subject>Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Physical Sciences ; Science & Technology ; Science & Technology - Other Topics ; Technology</subject><ispartof>ACS nano, 2021-12, Vol.15 (12), p.19070-19079</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>66</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000751890100026</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c297t-524ba9166406f3b1c491a77a62bf482b6def5c10400b0f6925f61beb0ff17b983</citedby><cites>FETCH-LOGICAL-c297t-524ba9166406f3b1c491a77a62bf482b6def5c10400b0f6925f61beb0ff17b983</cites><orcidid>0000-0002-8424-5368 ; 0000-0001-9085-500X ; 0000-0002-6318-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34494816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Haiming</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Chen, Jingzhao</creatorcontrib><creatorcontrib>Li, Yanshuai</creatorcontrib><creatorcontrib>Ye, Hongjun</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Dai, Qiushi</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zaifa</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><title>In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries</title><title>ACS nano</title><addtitle>ACS NANO</addtitle><addtitle>ACS Nano</addtitle><description>The two biggest promises of solid-state lithium (Li) metal batteries (SSLMBs) are the suppression of Li dendrites by solid-state electrolyte (SSE) and the realization of a high-energy-density Li anode. However, LMBs have not met their expectations due to Li dendrite growth causing short-circuiting. In fact, Li dendrites grow even more easily in SSE than in liquid electrolyte, but the reason for this remains unclear. Here we report in situ transmission electron microscopy observations of Li dendrite penetration through SSE and "dead" Li formation dynamics in SSLMBs. We show direct evidence that large electrochemomechanical stress generates cracks in the SSE and drives Li through the SSE directly. We revealed that fresh Li nucleation sites emerged in every discharge cycle, creating new "dead" Li in the following charging cycle and becoming the dominant Coulombic efficiency decay mechanism in SSLMBs. These results indicate that engineering flaw size and reducing electronic conductivity in SSEs are essential to improve the performance of SSLMBs.</description><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Physical Sciences</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Technology</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0ctu1DAUBmALgegF1uyQl0gorZ04vixh2kKlqYo0gNhFtnPMGCV2sR1V0xfgtUnJdNas_Mv-zln8RugNJWeU1PRc2xx0iGfUEiY5e4aOqWp4RST_8fyQW3qETnL-RUgrpOAv0VHDmGKS8mP05zrgjS8T_u7zpAf_oIuPAUeH175s_TTiLxCgpOW6bFOcfm7xJg6-x5cD2JLisCuAdejxBej-MHaxC3r0NmMfFl5tip7h0_sNFD3gj7oUSB7yK_TC6SHD6_15ir5dXX5dfa7Wt5-uVx_Wla2VKFVbM6MV5ZwR7hpDLVNUC6F5bRyTteE9uNZSwggxxHFVt45TA3N2VBglm1P0btl7l-LvCXLpRp8tDIMOEKfc1a0gjaBSqJmeL9SmmHMC190lP-q06yjpHtvv9u13-_bnibf75ZMZoT_4p7pn8H4B92Ciy9ZDsHBghBDRUqkInVP9qOX_65Uv__5oFadQmr_zfaSv</recordid><startdate>20211228</startdate><enddate>20211228</enddate><creator>Sun, Haiming</creator><creator>Liu, Qiunan</creator><creator>Chen, Jingzhao</creator><creator>Li, Yanshuai</creator><creator>Ye, Hongjun</creator><creator>Zhao, Jun</creator><creator>Geng, Lin</creator><creator>Dai, Qiushi</creator><creator>Yang, Tingting</creator><creator>Li, Hui</creator><creator>Wang, Zaifa</creator><creator>Zhang, Liqiang</creator><creator>Tang, Yongfu</creator><creator>Huang, Jianyu</creator><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid><orcidid>https://orcid.org/0000-0001-9085-500X</orcidid><orcidid>https://orcid.org/0000-0002-6318-3110</orcidid></search><sort><creationdate>20211228</creationdate><title>In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries</title><author>Sun, Haiming ; Liu, Qiunan ; Chen, Jingzhao ; Li, Yanshuai ; Ye, Hongjun ; Zhao, Jun ; Geng, Lin ; Dai, Qiushi ; Yang, Tingting ; Li, Hui ; Wang, Zaifa ; Zhang, Liqiang ; Tang, Yongfu ; Huang, Jianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-524ba9166406f3b1c491a77a62bf482b6def5c10400b0f6925f61beb0ff17b983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Physical Sciences</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Haiming</creatorcontrib><creatorcontrib>Liu, Qiunan</creatorcontrib><creatorcontrib>Chen, Jingzhao</creatorcontrib><creatorcontrib>Li, Yanshuai</creatorcontrib><creatorcontrib>Ye, Hongjun</creatorcontrib><creatorcontrib>Zhao, Jun</creatorcontrib><creatorcontrib>Geng, Lin</creatorcontrib><creatorcontrib>Dai, Qiushi</creatorcontrib><creatorcontrib>Yang, Tingting</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Wang, Zaifa</creatorcontrib><creatorcontrib>Zhang, Liqiang</creatorcontrib><creatorcontrib>Tang, Yongfu</creatorcontrib><creatorcontrib>Huang, Jianyu</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Haiming</au><au>Liu, Qiunan</au><au>Chen, Jingzhao</au><au>Li, Yanshuai</au><au>Ye, Hongjun</au><au>Zhao, Jun</au><au>Geng, Lin</au><au>Dai, Qiushi</au><au>Yang, Tingting</au><au>Li, Hui</au><au>Wang, Zaifa</au><au>Zhang, Liqiang</au><au>Tang, Yongfu</au><au>Huang, Jianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries</atitle><jtitle>ACS nano</jtitle><stitle>ACS NANO</stitle><addtitle>ACS Nano</addtitle><date>2021-12-28</date><risdate>2021</risdate><volume>15</volume><issue>12</issue><spage>19070</spage><epage>19079</epage><pages>19070-19079</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The two biggest promises of solid-state lithium (Li) metal batteries (SSLMBs) are the suppression of Li dendrites by solid-state electrolyte (SSE) and the realization of a high-energy-density Li anode. However, LMBs have not met their expectations due to Li dendrite growth causing short-circuiting. In fact, Li dendrites grow even more easily in SSE than in liquid electrolyte, but the reason for this remains unclear. Here we report in situ transmission electron microscopy observations of Li dendrite penetration through SSE and "dead" Li formation dynamics in SSLMBs. We show direct evidence that large electrochemomechanical stress generates cracks in the SSE and drives Li through the SSE directly. We revealed that fresh Li nucleation sites emerged in every discharge cycle, creating new "dead" Li in the following charging cycle and becoming the dominant Coulombic efficiency decay mechanism in SSLMBs. These results indicate that engineering flaw size and reducing electronic conductivity in SSEs are essential to improve the performance of SSLMBs.</abstract><cop>WASHINGTON</cop><pub>Amer Chemical Soc</pub><pmid>34494816</pmid><doi>10.1021/acsnano.1c04864</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8424-5368</orcidid><orcidid>https://orcid.org/0000-0001-9085-500X</orcidid><orcidid>https://orcid.org/0000-0002-6318-3110</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2021-12, Vol.15 (12), p.19070-19079 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2570371879 |
source | ACS Publications |
subjects | Chemistry Chemistry, Multidisciplinary Chemistry, Physical Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Physical Sciences Science & Technology Science & Technology - Other Topics Technology |
title | In Situ Visualization of Lithium Penetration through Solid Electrolyte and Dead Lithium Dynamics in Solid-State Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Visualization%20of%20Lithium%20Penetration%20through%20Solid%20Electrolyte%20and%20Dead%20Lithium%20Dynamics%20in%20Solid-State%20Lithium%20Metal%20Batteries&rft.jtitle=ACS%20nano&rft.au=Sun,%20Haiming&rft.date=2021-12-28&rft.volume=15&rft.issue=12&rft.spage=19070&rft.epage=19079&rft.pages=19070-19079&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c04864&rft_dat=%3Cproquest_cross%3E2570371879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570371879&rft_id=info:pmid/34494816&rfr_iscdi=true |