SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets
Survival analysis is widely used in cancer research, and although several methods exist in R, there is the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox proportional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends exi...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2021-10, Vol.137, p.104793-104793, Article 104793 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104793 |
---|---|
container_issue | |
container_start_page | 104793 |
container_title | Computers in biology and medicine |
container_volume | 137 |
creator | Ozhan, Ayse Tombaz, Melike Konu, Ozlen |
description | Survival analysis is widely used in cancer research, and although several methods exist in R, there is the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox proportional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends existing tools to multivariable CPH models of gene sets—as exemplified using the netrins and their receptors (netrins-receptors). It can be used to identify survival gene signatures (GSs) and select the best subsets of input gene, microRNA, methylation level, and copy number variation sets from the Cancer Genome Atlas (TCGA).
To create a tool for CPH model building and best subset selection, using survival data from TCGA with input gene expression files from UCSC Xena. Furthermore, we aim to analyze the input TSV file of netrins-receptors in SmulTCan and discuss our findings.
SmulTCan uses Shiny's reactivity with built-in R functions from packages for CPH model analysis and best subset selection including “survminer”, “riskRegression”, “rms”, “glmnet”, and “BeSS”.
Results from the SmulTCan app with the netrins-receptors gene set indicated unique hazard ratio GSs in certain renal and neural cancers, while the best subsets for this gene set, obtained via the app, could differentiate between prognostic outcomes in these cancers.
SmulTCan is available at http://konulabapps.bilkent.edu.tr:3838/SmulTCan/. The input file for netrins-receptors is available in the online version of this paper. TCGA dataset folders containing survival files are available through https://github.com/aozh7/SmulTCan/.
The supplementary information (SI) accompanies the online version of this article.
•SmulTCan is a web-based app for the analysis of CPH models and best subsets of genes.•SmulTCan builds models of 33 different cancers in TCGA-PANCAN embedded in the app.•The demo of the app with netrins-receptors indicates novel prognostic signatures.•The app can be used with gene, miRNA, CNV or methylation β-value sets from UCSC Xena.•Researchers from a variety of backgrounds with ranging interests can use SmulTCan. |
doi_str_mv | 10.1016/j.compbiomed.2021.104793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2570109789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482521005874</els_id><sourcerecordid>2577436527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-803abd9bb0acb6097ea8ed3bd87851a45fe0624eda80dc3af76eb32d7b02bedc3</originalsourceid><addsrcrecordid>eNqFkFGL1DAUhYO44Ljrfwj44ktnb5u2SX0bB90VFnzY8VHCTXLrZmibmrQj8-_NOoLgi0-Xe_jOgXMY4yVsSyjb2-PWhnE2PozkthVUZZZr2YkXbFMq2RXQiPol2wCUUNSqal6x1ykdAaAGARv27XFch8Mep_d8xx-f_HTmOM-Dt7j4MPE-RJ6BxZ8wejQD8bTGU_4GjhMO5-QTDz0_7O923OGC_Kdfnvh3mjJIS7phVz0Oid78udfs66ePh_198fDl7vN-91BY0XRLoUCgcZ0xgNa00ElCRU4Yp6RqSqybnqCtanKowFmBvWzJiMpJA5WhrFyzd5fcOYYfK6VFjz5ZGgacKKxJV43M_Tupuoy-_Qc9hjXmLr8pWYu2qWSm1IWyMaQUqddz9CPGsy5BP--uj_rv7vp5d33ZPVs_XKyUC588RZ2sp8mS85Hsol3w_w_5BcDJkYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577436527</pqid></control><display><type>article</type><title>SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets</title><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>Ozhan, Ayse ; Tombaz, Melike ; Konu, Ozlen</creator><creatorcontrib>Ozhan, Ayse ; Tombaz, Melike ; Konu, Ozlen</creatorcontrib><description>Survival analysis is widely used in cancer research, and although several methods exist in R, there is the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox proportional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends existing tools to multivariable CPH models of gene sets—as exemplified using the netrins and their receptors (netrins-receptors). It can be used to identify survival gene signatures (GSs) and select the best subsets of input gene, microRNA, methylation level, and copy number variation sets from the Cancer Genome Atlas (TCGA).
To create a tool for CPH model building and best subset selection, using survival data from TCGA with input gene expression files from UCSC Xena. Furthermore, we aim to analyze the input TSV file of netrins-receptors in SmulTCan and discuss our findings.
SmulTCan uses Shiny's reactivity with built-in R functions from packages for CPH model analysis and best subset selection including “survminer”, “riskRegression”, “rms”, “glmnet”, and “BeSS”.
Results from the SmulTCan app with the netrins-receptors gene set indicated unique hazard ratio GSs in certain renal and neural cancers, while the best subsets for this gene set, obtained via the app, could differentiate between prognostic outcomes in these cancers.
SmulTCan is available at http://konulabapps.bilkent.edu.tr:3838/SmulTCan/. The input file for netrins-receptors is available in the online version of this paper. TCGA dataset folders containing survival files are available through https://github.com/aozh7/SmulTCan/.
The supplementary information (SI) accompanies the online version of this article.
•SmulTCan is a web-based app for the analysis of CPH models and best subsets of genes.•SmulTCan builds models of 33 different cancers in TCGA-PANCAN embedded in the app.•The demo of the app with netrins-receptors indicates novel prognostic signatures.•The app can be used with gene, miRNA, CNV or methylation β-value sets from UCSC Xena.•Researchers from a variety of backgrounds with ranging interests can use SmulTCan.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2021.104793</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cancer ; Cancer research ; Copy number ; CPH ; Datasets ; DNA methylation ; Elastic net ; Gene expression ; Genomes ; Genomics ; K-M ; Medical prognosis ; MicroRNAs ; miRNA ; Netrins ; Principal components analysis ; Prognosis ; Receptors ; Ribonucleic acid ; RNA ; Shiny ; Survival ; Survival analysis ; TCGA</subject><ispartof>Computers in biology and medicine, 2021-10, Vol.137, p.104793-104793, Article 104793</ispartof><rights>2021 Elsevier Ltd</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-803abd9bb0acb6097ea8ed3bd87851a45fe0624eda80dc3af76eb32d7b02bedc3</citedby><cites>FETCH-LOGICAL-c359t-803abd9bb0acb6097ea8ed3bd87851a45fe0624eda80dc3af76eb32d7b02bedc3</cites><orcidid>0000-0003-0282-0777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2577436527?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Ozhan, Ayse</creatorcontrib><creatorcontrib>Tombaz, Melike</creatorcontrib><creatorcontrib>Konu, Ozlen</creatorcontrib><title>SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets</title><title>Computers in biology and medicine</title><description>Survival analysis is widely used in cancer research, and although several methods exist in R, there is the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox proportional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends existing tools to multivariable CPH models of gene sets—as exemplified using the netrins and their receptors (netrins-receptors). It can be used to identify survival gene signatures (GSs) and select the best subsets of input gene, microRNA, methylation level, and copy number variation sets from the Cancer Genome Atlas (TCGA).
To create a tool for CPH model building and best subset selection, using survival data from TCGA with input gene expression files from UCSC Xena. Furthermore, we aim to analyze the input TSV file of netrins-receptors in SmulTCan and discuss our findings.
SmulTCan uses Shiny's reactivity with built-in R functions from packages for CPH model analysis and best subset selection including “survminer”, “riskRegression”, “rms”, “glmnet”, and “BeSS”.
Results from the SmulTCan app with the netrins-receptors gene set indicated unique hazard ratio GSs in certain renal and neural cancers, while the best subsets for this gene set, obtained via the app, could differentiate between prognostic outcomes in these cancers.
SmulTCan is available at http://konulabapps.bilkent.edu.tr:3838/SmulTCan/. The input file for netrins-receptors is available in the online version of this paper. TCGA dataset folders containing survival files are available through https://github.com/aozh7/SmulTCan/.
The supplementary information (SI) accompanies the online version of this article.
•SmulTCan is a web-based app for the analysis of CPH models and best subsets of genes.•SmulTCan builds models of 33 different cancers in TCGA-PANCAN embedded in the app.•The demo of the app with netrins-receptors indicates novel prognostic signatures.•The app can be used with gene, miRNA, CNV or methylation β-value sets from UCSC Xena.•Researchers from a variety of backgrounds with ranging interests can use SmulTCan.</description><subject>Cancer</subject><subject>Cancer research</subject><subject>Copy number</subject><subject>CPH</subject><subject>Datasets</subject><subject>DNA methylation</subject><subject>Elastic net</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genomics</subject><subject>K-M</subject><subject>Medical prognosis</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Netrins</subject><subject>Principal components analysis</subject><subject>Prognosis</subject><subject>Receptors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Shiny</subject><subject>Survival</subject><subject>Survival analysis</subject><subject>TCGA</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkFGL1DAUhYO44Ljrfwj44ktnb5u2SX0bB90VFnzY8VHCTXLrZmibmrQj8-_NOoLgi0-Xe_jOgXMY4yVsSyjb2-PWhnE2PozkthVUZZZr2YkXbFMq2RXQiPol2wCUUNSqal6x1ykdAaAGARv27XFch8Mep_d8xx-f_HTmOM-Dt7j4MPE-RJ6BxZ8wejQD8bTGU_4GjhMO5-QTDz0_7O923OGC_Kdfnvh3mjJIS7phVz0Oid78udfs66ePh_198fDl7vN-91BY0XRLoUCgcZ0xgNa00ElCRU4Yp6RqSqybnqCtanKowFmBvWzJiMpJA5WhrFyzd5fcOYYfK6VFjz5ZGgacKKxJV43M_Tupuoy-_Qc9hjXmLr8pWYu2qWSm1IWyMaQUqddz9CPGsy5BP--uj_rv7vp5d33ZPVs_XKyUC588RZ2sp8mS85Hsol3w_w_5BcDJkYs</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Ozhan, Ayse</creator><creator>Tombaz, Melike</creator><creator>Konu, Ozlen</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0282-0777</orcidid></search><sort><creationdate>202110</creationdate><title>SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets</title><author>Ozhan, Ayse ; Tombaz, Melike ; Konu, Ozlen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-803abd9bb0acb6097ea8ed3bd87851a45fe0624eda80dc3af76eb32d7b02bedc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>Cancer research</topic><topic>Copy number</topic><topic>CPH</topic><topic>Datasets</topic><topic>DNA methylation</topic><topic>Elastic net</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genomics</topic><topic>K-M</topic><topic>Medical prognosis</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Netrins</topic><topic>Principal components analysis</topic><topic>Prognosis</topic><topic>Receptors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Shiny</topic><topic>Survival</topic><topic>Survival analysis</topic><topic>TCGA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ozhan, Ayse</creatorcontrib><creatorcontrib>Tombaz, Melike</creatorcontrib><creatorcontrib>Konu, Ozlen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ozhan, Ayse</au><au>Tombaz, Melike</au><au>Konu, Ozlen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets</atitle><jtitle>Computers in biology and medicine</jtitle><date>2021-10</date><risdate>2021</risdate><volume>137</volume><spage>104793</spage><epage>104793</epage><pages>104793-104793</pages><artnum>104793</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Survival analysis is widely used in cancer research, and although several methods exist in R, there is the need for a more interactive, flexible, yet comprehensive online tool to analyze gene sets using Cox proportional hazards (CPH) models. The web-based Shiny application (app) SmulTCan extends existing tools to multivariable CPH models of gene sets—as exemplified using the netrins and their receptors (netrins-receptors). It can be used to identify survival gene signatures (GSs) and select the best subsets of input gene, microRNA, methylation level, and copy number variation sets from the Cancer Genome Atlas (TCGA).
To create a tool for CPH model building and best subset selection, using survival data from TCGA with input gene expression files from UCSC Xena. Furthermore, we aim to analyze the input TSV file of netrins-receptors in SmulTCan and discuss our findings.
SmulTCan uses Shiny's reactivity with built-in R functions from packages for CPH model analysis and best subset selection including “survminer”, “riskRegression”, “rms”, “glmnet”, and “BeSS”.
Results from the SmulTCan app with the netrins-receptors gene set indicated unique hazard ratio GSs in certain renal and neural cancers, while the best subsets for this gene set, obtained via the app, could differentiate between prognostic outcomes in these cancers.
SmulTCan is available at http://konulabapps.bilkent.edu.tr:3838/SmulTCan/. The input file for netrins-receptors is available in the online version of this paper. TCGA dataset folders containing survival files are available through https://github.com/aozh7/SmulTCan/.
The supplementary information (SI) accompanies the online version of this article.
•SmulTCan is a web-based app for the analysis of CPH models and best subsets of genes.•SmulTCan builds models of 33 different cancers in TCGA-PANCAN embedded in the app.•The demo of the app with netrins-receptors indicates novel prognostic signatures.•The app can be used with gene, miRNA, CNV or methylation β-value sets from UCSC Xena.•Researchers from a variety of backgrounds with ranging interests can use SmulTCan.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compbiomed.2021.104793</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0282-0777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2021-10, Vol.137, p.104793-104793, Article 104793 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_2570109789 |
source | Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland |
subjects | Cancer Cancer research Copy number CPH Datasets DNA methylation Elastic net Gene expression Genomes Genomics K-M Medical prognosis MicroRNAs miRNA Netrins Principal components analysis Prognosis Receptors Ribonucleic acid RNA Shiny Survival Survival analysis TCGA |
title | SmulTCan: A Shiny application for multivariable survival analysis of TCGA data with gene sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SmulTCan:%20A%20Shiny%20application%20for%20multivariable%20survival%20analysis%20of%20TCGA%20data%20with%20gene%20sets&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Ozhan,%20Ayse&rft.date=2021-10&rft.volume=137&rft.spage=104793&rft.epage=104793&rft.pages=104793-104793&rft.artnum=104793&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2021.104793&rft_dat=%3Cproquest_cross%3E2577436527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2577436527&rft_id=info:pmid/&rft_els_id=S0010482521005874&rfr_iscdi=true |