Entropy Landscaping of High‐Entropy Carbides
The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and com...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-10, Vol.33 (42), p.e2102904-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2102904 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Hossain, Mohammad Delower Borman, Trent Oses, Corey Esters, Marco Toher, Cormac Feng, Lun Kumar, Abinash Fahrenholtz, William G. Curtarolo, Stefano Brenner, Donald LeBeau, James M. Maria, Jon‐Paul |
description | The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.
High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC. |
doi_str_mv | 10.1002/adma.202102904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569384354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583083140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</originalsourceid><addsrcrecordid>eNqFkLtKA0EUhgdRMEZb64CNza5nrtlThhiNELHRepjMJW7Y7K4zCZLOR_AZfRI3xAvYWJ3i_76fw0_IOYWcArAr41YmZ8AoMARxQHpUMpoJQHlIeoBcZqhEcUxOUloCACpQPZJP6nVs2u1gZmqXrGnLejFowmBaLp4_3t6_07GJ89L5dEqOgqmSP_u6ffJ0M3kcT7PZw-3deDTLLJcgMkSlhCgUhmBZCFyEEArhpfND6YSw4BRy5hkObUDuvAg4NzzYOWfKouS8Ty73vW1sXjY-rfWqTNZXlal9s0maya6gEFyKDr34gy6bTay77zqq4FBwKqCj8j1lY5NS9EG3sVyZuNUU9G4-vZtP_8zXCbgXXsvKb_-h9ej6fvTrfgIrYXL6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583083140</pqid></control><display><type>article</type><title>Entropy Landscaping of High‐Entropy Carbides</title><source>Access via Wiley Online Library</source><creator>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</creator><creatorcontrib>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</creatorcontrib><description>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.
High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202102904</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbides ; Composition ; configurational entropy ; Density functional theory ; electronic and vibrational entropy ; Enthalpy ; Entropy ; First principles ; Free energy ; High temperature ; high‐entropy carbides ; Landscaping ; Magnetic properties ; Magnetron sputtering ; Materials science ; Mathematical analysis ; Physical vapor deposition ; Rapid quenching (metallurgy) ; Room temperature ; Structural stability ; Temperature dependence ; Thermodynamic properties ; thermodynamic stability ; Thin films ; valence electron concentration</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102904-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</citedby><cites>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</cites><orcidid>0000-0003-4769-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202102904$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202102904$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Oses, Corey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Toher, Cormac</creatorcontrib><creatorcontrib>Feng, Lun</creatorcontrib><creatorcontrib>Kumar, Abinash</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Brenner, Donald</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><title>Entropy Landscaping of High‐Entropy Carbides</title><title>Advanced materials (Weinheim)</title><description>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.
High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</description><subject>Carbides</subject><subject>Composition</subject><subject>configurational entropy</subject><subject>Density functional theory</subject><subject>electronic and vibrational entropy</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>First principles</subject><subject>Free energy</subject><subject>High temperature</subject><subject>high‐entropy carbides</subject><subject>Landscaping</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Physical vapor deposition</subject><subject>Rapid quenching (metallurgy)</subject><subject>Room temperature</subject><subject>Structural stability</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>thermodynamic stability</subject><subject>Thin films</subject><subject>valence electron concentration</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtKA0EUhgdRMEZb64CNza5nrtlThhiNELHRepjMJW7Y7K4zCZLOR_AZfRI3xAvYWJ3i_76fw0_IOYWcArAr41YmZ8AoMARxQHpUMpoJQHlIeoBcZqhEcUxOUloCACpQPZJP6nVs2u1gZmqXrGnLejFowmBaLp4_3t6_07GJ89L5dEqOgqmSP_u6ffJ0M3kcT7PZw-3deDTLLJcgMkSlhCgUhmBZCFyEEArhpfND6YSw4BRy5hkObUDuvAg4NzzYOWfKouS8Ty73vW1sXjY-rfWqTNZXlal9s0maya6gEFyKDr34gy6bTay77zqq4FBwKqCj8j1lY5NS9EG3sVyZuNUU9G4-vZtP_8zXCbgXXsvKb_-h9ej6fvTrfgIrYXL6</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hossain, Mohammad Delower</creator><creator>Borman, Trent</creator><creator>Oses, Corey</creator><creator>Esters, Marco</creator><creator>Toher, Cormac</creator><creator>Feng, Lun</creator><creator>Kumar, Abinash</creator><creator>Fahrenholtz, William G.</creator><creator>Curtarolo, Stefano</creator><creator>Brenner, Donald</creator><creator>LeBeau, James M.</creator><creator>Maria, Jon‐Paul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></search><sort><creationdate>20211001</creationdate><title>Entropy Landscaping of High‐Entropy Carbides</title><author>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbides</topic><topic>Composition</topic><topic>configurational entropy</topic><topic>Density functional theory</topic><topic>electronic and vibrational entropy</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>First principles</topic><topic>Free energy</topic><topic>High temperature</topic><topic>high‐entropy carbides</topic><topic>Landscaping</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Physical vapor deposition</topic><topic>Rapid quenching (metallurgy)</topic><topic>Room temperature</topic><topic>Structural stability</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>thermodynamic stability</topic><topic>Thin films</topic><topic>valence electron concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Oses, Corey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Toher, Cormac</creatorcontrib><creatorcontrib>Feng, Lun</creatorcontrib><creatorcontrib>Kumar, Abinash</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Brenner, Donald</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Delower</au><au>Borman, Trent</au><au>Oses, Corey</au><au>Esters, Marco</au><au>Toher, Cormac</au><au>Feng, Lun</au><au>Kumar, Abinash</au><au>Fahrenholtz, William G.</au><au>Curtarolo, Stefano</au><au>Brenner, Donald</au><au>LeBeau, James M.</au><au>Maria, Jon‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Landscaping of High‐Entropy Carbides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>42</issue><spage>e2102904</spage><epage>n/a</epage><pages>e2102904-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections.
High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202102904</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102904-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2569384354 |
source | Access via Wiley Online Library |
subjects | Carbides Composition configurational entropy Density functional theory electronic and vibrational entropy Enthalpy Entropy First principles Free energy High temperature high‐entropy carbides Landscaping Magnetic properties Magnetron sputtering Materials science Mathematical analysis Physical vapor deposition Rapid quenching (metallurgy) Room temperature Structural stability Temperature dependence Thermodynamic properties thermodynamic stability Thin films valence electron concentration |
title | Entropy Landscaping of High‐Entropy Carbides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Landscaping%20of%20High%E2%80%90Entropy%20Carbides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hossain,%20Mohammad%20Delower&rft.date=2021-10-01&rft.volume=33&rft.issue=42&rft.spage=e2102904&rft.epage=n/a&rft.pages=e2102904-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202102904&rft_dat=%3Cproquest_cross%3E2583083140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583083140&rft_id=info:pmid/&rfr_iscdi=true |