Entropy Landscaping of High‐Entropy Carbides

The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-10, Vol.33 (42), p.e2102904-n/a
Hauptverfasser: Hossain, Mohammad Delower, Borman, Trent, Oses, Corey, Esters, Marco, Toher, Cormac, Feng, Lun, Kumar, Abinash, Fahrenholtz, William G., Curtarolo, Stefano, Brenner, Donald, LeBeau, James M., Maria, Jon‐Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 42
container_start_page e2102904
container_title Advanced materials (Weinheim)
container_volume 33
creator Hossain, Mohammad Delower
Borman, Trent
Oses, Corey
Esters, Marco
Toher, Cormac
Feng, Lun
Kumar, Abinash
Fahrenholtz, William G.
Curtarolo, Stefano
Brenner, Donald
LeBeau, James M.
Maria, Jon‐Paul
description The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (>3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections. High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.
doi_str_mv 10.1002/adma.202102904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569384354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583083140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</originalsourceid><addsrcrecordid>eNqFkLtKA0EUhgdRMEZb64CNza5nrtlThhiNELHRepjMJW7Y7K4zCZLOR_AZfRI3xAvYWJ3i_76fw0_IOYWcArAr41YmZ8AoMARxQHpUMpoJQHlIeoBcZqhEcUxOUloCACpQPZJP6nVs2u1gZmqXrGnLejFowmBaLp4_3t6_07GJ89L5dEqOgqmSP_u6ffJ0M3kcT7PZw-3deDTLLJcgMkSlhCgUhmBZCFyEEArhpfND6YSw4BRy5hkObUDuvAg4NzzYOWfKouS8Ty73vW1sXjY-rfWqTNZXlal9s0maya6gEFyKDr34gy6bTay77zqq4FBwKqCj8j1lY5NS9EG3sVyZuNUU9G4-vZtP_8zXCbgXXsvKb_-h9ej6fvTrfgIrYXL6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583083140</pqid></control><display><type>article</type><title>Entropy Landscaping of High‐Entropy Carbides</title><source>Access via Wiley Online Library</source><creator>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</creator><creatorcontrib>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</creatorcontrib><description>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (&gt;3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections. High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202102904</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbides ; Composition ; configurational entropy ; Density functional theory ; electronic and vibrational entropy ; Enthalpy ; Entropy ; First principles ; Free energy ; High temperature ; high‐entropy carbides ; Landscaping ; Magnetic properties ; Magnetron sputtering ; Materials science ; Mathematical analysis ; Physical vapor deposition ; Rapid quenching (metallurgy) ; Room temperature ; Structural stability ; Temperature dependence ; Thermodynamic properties ; thermodynamic stability ; Thin films ; valence electron concentration</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102904-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</citedby><cites>FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</cites><orcidid>0000-0003-4769-0339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202102904$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202102904$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Oses, Corey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Toher, Cormac</creatorcontrib><creatorcontrib>Feng, Lun</creatorcontrib><creatorcontrib>Kumar, Abinash</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Brenner, Donald</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><title>Entropy Landscaping of High‐Entropy Carbides</title><title>Advanced materials (Weinheim)</title><description>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (&gt;3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections. High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</description><subject>Carbides</subject><subject>Composition</subject><subject>configurational entropy</subject><subject>Density functional theory</subject><subject>electronic and vibrational entropy</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>First principles</subject><subject>Free energy</subject><subject>High temperature</subject><subject>high‐entropy carbides</subject><subject>Landscaping</subject><subject>Magnetic properties</subject><subject>Magnetron sputtering</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Physical vapor deposition</subject><subject>Rapid quenching (metallurgy)</subject><subject>Room temperature</subject><subject>Structural stability</subject><subject>Temperature dependence</subject><subject>Thermodynamic properties</subject><subject>thermodynamic stability</subject><subject>Thin films</subject><subject>valence electron concentration</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtKA0EUhgdRMEZb64CNza5nrtlThhiNELHRepjMJW7Y7K4zCZLOR_AZfRI3xAvYWJ3i_76fw0_IOYWcArAr41YmZ8AoMARxQHpUMpoJQHlIeoBcZqhEcUxOUloCACpQPZJP6nVs2u1gZmqXrGnLejFowmBaLp4_3t6_07GJ89L5dEqOgqmSP_u6ffJ0M3kcT7PZw-3deDTLLJcgMkSlhCgUhmBZCFyEEArhpfND6YSw4BRy5hkObUDuvAg4NzzYOWfKouS8Ty73vW1sXjY-rfWqTNZXlal9s0maya6gEFyKDr34gy6bTay77zqq4FBwKqCj8j1lY5NS9EG3sVyZuNUU9G4-vZtP_8zXCbgXXsvKb_-h9ej6fvTrfgIrYXL6</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Hossain, Mohammad Delower</creator><creator>Borman, Trent</creator><creator>Oses, Corey</creator><creator>Esters, Marco</creator><creator>Toher, Cormac</creator><creator>Feng, Lun</creator><creator>Kumar, Abinash</creator><creator>Fahrenholtz, William G.</creator><creator>Curtarolo, Stefano</creator><creator>Brenner, Donald</creator><creator>LeBeau, James M.</creator><creator>Maria, Jon‐Paul</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></search><sort><creationdate>20211001</creationdate><title>Entropy Landscaping of High‐Entropy Carbides</title><author>Hossain, Mohammad Delower ; Borman, Trent ; Oses, Corey ; Esters, Marco ; Toher, Cormac ; Feng, Lun ; Kumar, Abinash ; Fahrenholtz, William G. ; Curtarolo, Stefano ; Brenner, Donald ; LeBeau, James M. ; Maria, Jon‐Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3504-996644869ffc2ff34fff84e5de75d44c0d6932e297cf93de4f9ba3fcb326c9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbides</topic><topic>Composition</topic><topic>configurational entropy</topic><topic>Density functional theory</topic><topic>electronic and vibrational entropy</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>First principles</topic><topic>Free energy</topic><topic>High temperature</topic><topic>high‐entropy carbides</topic><topic>Landscaping</topic><topic>Magnetic properties</topic><topic>Magnetron sputtering</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Physical vapor deposition</topic><topic>Rapid quenching (metallurgy)</topic><topic>Room temperature</topic><topic>Structural stability</topic><topic>Temperature dependence</topic><topic>Thermodynamic properties</topic><topic>thermodynamic stability</topic><topic>Thin films</topic><topic>valence electron concentration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Mohammad Delower</creatorcontrib><creatorcontrib>Borman, Trent</creatorcontrib><creatorcontrib>Oses, Corey</creatorcontrib><creatorcontrib>Esters, Marco</creatorcontrib><creatorcontrib>Toher, Cormac</creatorcontrib><creatorcontrib>Feng, Lun</creatorcontrib><creatorcontrib>Kumar, Abinash</creatorcontrib><creatorcontrib>Fahrenholtz, William G.</creatorcontrib><creatorcontrib>Curtarolo, Stefano</creatorcontrib><creatorcontrib>Brenner, Donald</creatorcontrib><creatorcontrib>LeBeau, James M.</creatorcontrib><creatorcontrib>Maria, Jon‐Paul</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hossain, Mohammad Delower</au><au>Borman, Trent</au><au>Oses, Corey</au><au>Esters, Marco</au><au>Toher, Cormac</au><au>Feng, Lun</au><au>Kumar, Abinash</au><au>Fahrenholtz, William G.</au><au>Curtarolo, Stefano</au><au>Brenner, Donald</au><au>LeBeau, James M.</au><au>Maria, Jon‐Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy Landscaping of High‐Entropy Carbides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>42</issue><spage>e2102904</spage><epage>n/a</epage><pages>e2102904-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The entropy landscape of high‐entropy carbides can be used to understand and predict their structure, properties, and stability. Using first principles calculations, the individual and temperature‐dependent contributions of vibrational, electronic, and configurational entropies are analyzed, and compare them qualitatively to the enthalpies of mixing. As an experimental complement, high‐entropy carbide thin films are synthesized with high power impulse magnetron sputtering to assess structure and properties. All compositions can be stabilized in the single‐phase state despite finite positive, and in some cases substantial, enthalpies of mixing. Density functional theory calculations reveal that configurational entropy dominates the free energy landscape and compensates for the enthalpic penalty, whereas the vibrational and electronic entropies offer negligible contributions. The calculations predict that in many compositions, the single‐phase state becomes stable at extremely high temperatures (&gt;3000 K). Consequently, rapid quenching rates are needed to preserve solubility at room temperature and facilitate physical characterization. Physical vapor deposition provides this experimental validation opportunity. The computation/experimental data set generated in this work identifies “valence electron concentration” as an effective descriptor to predict structural and thermodynamic properties of multicomponent carbides and educate new formulation selections. High‐entropy carbides are designed based on valence electron concentration (VEC). VEC describes entropy, enthalpy, free energy, volume, and metastability of high entropy carbides such that a new composition thermodynamic property can be explained based on VEC.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202102904</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4769-0339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102904-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2569384354
source Access via Wiley Online Library
subjects Carbides
Composition
configurational entropy
Density functional theory
electronic and vibrational entropy
Enthalpy
Entropy
First principles
Free energy
High temperature
high‐entropy carbides
Landscaping
Magnetic properties
Magnetron sputtering
Materials science
Mathematical analysis
Physical vapor deposition
Rapid quenching (metallurgy)
Room temperature
Structural stability
Temperature dependence
Thermodynamic properties
thermodynamic stability
Thin films
valence electron concentration
title Entropy Landscaping of High‐Entropy Carbides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A00%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20Landscaping%20of%20High%E2%80%90Entropy%20Carbides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Hossain,%20Mohammad%20Delower&rft.date=2021-10-01&rft.volume=33&rft.issue=42&rft.spage=e2102904&rft.epage=n/a&rft.pages=e2102904-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202102904&rft_dat=%3Cproquest_cross%3E2583083140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583083140&rft_id=info:pmid/&rfr_iscdi=true