Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories

Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-08, Vol.127 (8), p.1-081102, Article 081102
Hauptverfasser: Smith, Rory, Borhanian, Ssohrab, Sathyaprakash, Bangalore, Hernandez Vivanco, Francisco, Field, Scott E., Lasky, Paul, Mandel, Ilya, Morisaki, Soichiro, Ottaway, David, Slagmolen, Bram J. J., Thrane, Eric, Töyrä, Daniel, Vitale, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 081102
container_issue 8
container_start_page 1
container_title Physical review letters
container_volume 127
creator Smith, Rory
Borhanian, Ssohrab
Sathyaprakash, Bangalore
Hernandez Vivanco, Francisco
Field, Scott E.
Lasky, Paul
Mandel, Ilya
Morisaki, Soichiro
Ottaway, David
Slagmolen, Bram J. J.
Thrane, Eric
Töyrä, Daniel
Vitale, Salvatore
description Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced-order models for ∼ 90 -min-long gravitational-wave signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼ 1.3 × 104 compared to the calculation times without reduced-order models. The reduced-order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to Earth's rotation, and spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.
doi_str_mv 10.1103/PhysRevLett.127.081102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569383939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569383939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-43af7f8bfda22e34c959fc4a6acf9f25ee2aa64152bf77179e8ae96a6662f1ae3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVJoY7Tv1AEufSyrj52pdUxDolrcJKSpPS4jDejWsaWnJFs8L_vNu6hhDkMDM8MzPsw9kWKiZRCf_uxOuZHPCywlIlUdiLaYaw-sJEU1lVWyvqMjYTQsnJC2E_sPOe1EEIq047YdgpHzAEin0ePhLFH7hPxGcEhFCghRdjwX3DAzD2lLZ-GCHTk97gvlCJ_KkD8Duk3UuYh8udVoBc-w4j0tswflhnpACVRwHzBPnrYZPz8r4_Zz9ub5-vv1eJhNr--WlS9blWpag3e-nbpX0Ap1HXvGuf7Ggz03nnVICoAU8tGLb210jpsAZ0BY4zyElCP2dfT3R2l1z3m0m1D7nGzgYhpnzvVGKdb7YYas8t36DrtaXj6jWpMaxplB8qcqJ5SzoS-21HYDkF0UnR_LXT_WegGC93Jgv4DOMCAAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565686527</pqid></control><display><type>article</type><title>Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Smith, Rory ; Borhanian, Ssohrab ; Sathyaprakash, Bangalore ; Hernandez Vivanco, Francisco ; Field, Scott E. ; Lasky, Paul ; Mandel, Ilya ; Morisaki, Soichiro ; Ottaway, David ; Slagmolen, Bram J. J. ; Thrane, Eric ; Töyrä, Daniel ; Vitale, Salvatore</creator><creatorcontrib>Smith, Rory ; Borhanian, Ssohrab ; Sathyaprakash, Bangalore ; Hernandez Vivanco, Francisco ; Field, Scott E. ; Lasky, Paul ; Mandel, Ilya ; Morisaki, Soichiro ; Ottaway, David ; Slagmolen, Bram J. J. ; Thrane, Eric ; Töyrä, Daniel ; Vitale, Salvatore</creatorcontrib><description>Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced-order models for ∼ 90 -min-long gravitational-wave signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼ 1.3 × 104 compared to the calculation times without reduced-order models. The reduced-order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to Earth's rotation, and spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.081102</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Amplitude modulation ; Bayesian analysis ; Binary stars ; Deformation effects ; Earth rotation ; Formability ; Gravitational waves ; Neutron stars ; Neutrons ; Observatories ; Reduced order models ; Signal to noise ratio ; Star mergers ; Statistical inference</subject><ispartof>Physical review letters, 2021-08, Vol.127 (8), p.1-081102, Article 081102</ispartof><rights>Copyright American Physical Society Aug 20, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-43af7f8bfda22e34c959fc4a6acf9f25ee2aa64152bf77179e8ae96a6662f1ae3</citedby><cites>FETCH-LOGICAL-c382t-43af7f8bfda22e34c959fc4a6acf9f25ee2aa64152bf77179e8ae96a6662f1ae3</cites><orcidid>0000-0003-3763-1386 ; 0000-0003-3717-1084 ; 0000-0003-2700-0767 ; 0000-0003-3845-7586 ; 0000-0003-0161-6109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27922,27923</link.rule.ids></links><search><creatorcontrib>Smith, Rory</creatorcontrib><creatorcontrib>Borhanian, Ssohrab</creatorcontrib><creatorcontrib>Sathyaprakash, Bangalore</creatorcontrib><creatorcontrib>Hernandez Vivanco, Francisco</creatorcontrib><creatorcontrib>Field, Scott E.</creatorcontrib><creatorcontrib>Lasky, Paul</creatorcontrib><creatorcontrib>Mandel, Ilya</creatorcontrib><creatorcontrib>Morisaki, Soichiro</creatorcontrib><creatorcontrib>Ottaway, David</creatorcontrib><creatorcontrib>Slagmolen, Bram J. J.</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><creatorcontrib>Töyrä, Daniel</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><title>Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories</title><title>Physical review letters</title><description>Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced-order models for ∼ 90 -min-long gravitational-wave signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼ 1.3 × 104 compared to the calculation times without reduced-order models. The reduced-order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to Earth's rotation, and spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.</description><subject>Amplitude modulation</subject><subject>Bayesian analysis</subject><subject>Binary stars</subject><subject>Deformation effects</subject><subject>Earth rotation</subject><subject>Formability</subject><subject>Gravitational waves</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Observatories</subject><subject>Reduced order models</subject><subject>Signal to noise ratio</subject><subject>Star mergers</subject><subject>Statistical inference</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkU1rGzEQhkVJoY7Tv1AEufSyrj52pdUxDolrcJKSpPS4jDejWsaWnJFs8L_vNu6hhDkMDM8MzPsw9kWKiZRCf_uxOuZHPCywlIlUdiLaYaw-sJEU1lVWyvqMjYTQsnJC2E_sPOe1EEIq047YdgpHzAEin0ePhLFH7hPxGcEhFCghRdjwX3DAzD2lLZ-GCHTk97gvlCJ_KkD8Duk3UuYh8udVoBc-w4j0tswflhnpACVRwHzBPnrYZPz8r4_Zz9ub5-vv1eJhNr--WlS9blWpag3e-nbpX0Ap1HXvGuf7Ggz03nnVICoAU8tGLb210jpsAZ0BY4zyElCP2dfT3R2l1z3m0m1D7nGzgYhpnzvVGKdb7YYas8t36DrtaXj6jWpMaxplB8qcqJ5SzoS-21HYDkF0UnR_LXT_WegGC93Jgv4DOMCAAg</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Smith, Rory</creator><creator>Borhanian, Ssohrab</creator><creator>Sathyaprakash, Bangalore</creator><creator>Hernandez Vivanco, Francisco</creator><creator>Field, Scott E.</creator><creator>Lasky, Paul</creator><creator>Mandel, Ilya</creator><creator>Morisaki, Soichiro</creator><creator>Ottaway, David</creator><creator>Slagmolen, Bram J. J.</creator><creator>Thrane, Eric</creator><creator>Töyrä, Daniel</creator><creator>Vitale, Salvatore</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3763-1386</orcidid><orcidid>https://orcid.org/0000-0003-3717-1084</orcidid><orcidid>https://orcid.org/0000-0003-2700-0767</orcidid><orcidid>https://orcid.org/0000-0003-3845-7586</orcidid><orcidid>https://orcid.org/0000-0003-0161-6109</orcidid></search><sort><creationdate>20210820</creationdate><title>Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories</title><author>Smith, Rory ; Borhanian, Ssohrab ; Sathyaprakash, Bangalore ; Hernandez Vivanco, Francisco ; Field, Scott E. ; Lasky, Paul ; Mandel, Ilya ; Morisaki, Soichiro ; Ottaway, David ; Slagmolen, Bram J. J. ; Thrane, Eric ; Töyrä, Daniel ; Vitale, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-43af7f8bfda22e34c959fc4a6acf9f25ee2aa64152bf77179e8ae96a6662f1ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitude modulation</topic><topic>Bayesian analysis</topic><topic>Binary stars</topic><topic>Deformation effects</topic><topic>Earth rotation</topic><topic>Formability</topic><topic>Gravitational waves</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Observatories</topic><topic>Reduced order models</topic><topic>Signal to noise ratio</topic><topic>Star mergers</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Rory</creatorcontrib><creatorcontrib>Borhanian, Ssohrab</creatorcontrib><creatorcontrib>Sathyaprakash, Bangalore</creatorcontrib><creatorcontrib>Hernandez Vivanco, Francisco</creatorcontrib><creatorcontrib>Field, Scott E.</creatorcontrib><creatorcontrib>Lasky, Paul</creatorcontrib><creatorcontrib>Mandel, Ilya</creatorcontrib><creatorcontrib>Morisaki, Soichiro</creatorcontrib><creatorcontrib>Ottaway, David</creatorcontrib><creatorcontrib>Slagmolen, Bram J. J.</creatorcontrib><creatorcontrib>Thrane, Eric</creatorcontrib><creatorcontrib>Töyrä, Daniel</creatorcontrib><creatorcontrib>Vitale, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Rory</au><au>Borhanian, Ssohrab</au><au>Sathyaprakash, Bangalore</au><au>Hernandez Vivanco, Francisco</au><au>Field, Scott E.</au><au>Lasky, Paul</au><au>Mandel, Ilya</au><au>Morisaki, Soichiro</au><au>Ottaway, David</au><au>Slagmolen, Bram J. J.</au><au>Thrane, Eric</au><au>Töyrä, Daniel</au><au>Vitale, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories</atitle><jtitle>Physical review letters</jtitle><date>2021-08-20</date><risdate>2021</risdate><volume>127</volume><issue>8</issue><spage>1</spage><epage>081102</epage><pages>1-081102</pages><artnum>081102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Third generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced-order models for ∼ 90 -min-long gravitational-wave signals covering the observing band (5–2048 Hz), speeding up inference by a factor of ∼ 1.3 × 104 compared to the calculation times without reduced-order models. The reduced-order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to Earth's rotation, and spin-induced orbital precession. We show how reduced-order modeling can accelerate inference on data containing multiple overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.081102</doi><orcidid>https://orcid.org/0000-0003-3763-1386</orcidid><orcidid>https://orcid.org/0000-0003-3717-1084</orcidid><orcidid>https://orcid.org/0000-0003-2700-0767</orcidid><orcidid>https://orcid.org/0000-0003-3845-7586</orcidid><orcidid>https://orcid.org/0000-0003-0161-6109</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-08, Vol.127 (8), p.1-081102, Article 081102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2569383939
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Amplitude modulation
Bayesian analysis
Binary stars
Deformation effects
Earth rotation
Formability
Gravitational waves
Neutron stars
Neutrons
Observatories
Reduced order models
Signal to noise ratio
Star mergers
Statistical inference
title Bayesian Inference for Gravitational Waves from Binary Neutron Star Mergers in Third Generation Observatories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A05%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Inference%20for%20Gravitational%20Waves%20from%20Binary%20Neutron%20Star%20Mergers%20in%20Third%20Generation%20Observatories&rft.jtitle=Physical%20review%20letters&rft.au=Smith,%20Rory&rft.date=2021-08-20&rft.volume=127&rft.issue=8&rft.spage=1&rft.epage=081102&rft.pages=1-081102&rft.artnum=081102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.081102&rft_dat=%3Cproquest_cross%3E2569383939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565686527&rft_id=info:pmid/&rfr_iscdi=true