Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents wit...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2021-08, Vol.13 (31), p.13538-13549 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13549 |
---|---|
container_issue | 31 |
container_start_page | 13538 |
container_title | Nanoscale |
container_volume | 13 |
creator | Obořilová, Radka Šimečková, Hana Pastucha, Matěj Klimovič, Šimon Víšová, Ivana Přibyl, Jan Vaisocherová-Lísalová, Hana Pantůček, Roman Skládal, Petr Mašlaňová, Ivana Farka, Zdeněk |
description | The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy. |
doi_str_mv | 10.1039/d1nr02921e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569382484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569382484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD8u_oKAFy-r-e7usRS_oOBFz2Wana0pu8maZA_9A_5uUxQRLzPvvPMwvAwhV5zdciabu5b7yEQjOB6RmWCKVVLOxfGvNuqUnKW0Y8w00sgZ-VzkMDhLuxAt0qJiSDaMewq-pWmKHRR77CENwdOIKXjwxSl4maCvshuQJue3PVYW-54WzuUQi0NDRzdgM0YXxnfYYjVg6yBjS_t9cunPHi7ISQd9wsuffk7eHu5fl0_V6uXxeblYVZbX81xpzrDVyIVFzjWXYNAYA41G1dra2NaoBqXqoCuVKyVQaTBGNLKTZmNreU5uvu-OMXxMmPJ6cOmQGzyGKa2FLn-phapVQa__obswRV_SHSgmNNeSyS_mknL1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560251530</pqid></control><display><type>article</type><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><source>Royal Society Of Chemistry Journals</source><creator>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</creator><creatorcontrib>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</creatorcontrib><description>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02921e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antibiotics ; Antiinfectives and antibacterials ; Atomic force microscopy ; Bacteria ; Biomechanics ; Disintegration ; Economic impact ; High resolution ; Microscopy ; Modulus of elasticity ; Phages ; Real time ; Stiffness ; Surface plasmon resonance</subject><ispartof>Nanoscale, 2021-08, Vol.13 (31), p.13538-13549</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Šimečková, Hana</creatorcontrib><creatorcontrib>Pastucha, Matěj</creatorcontrib><creatorcontrib>Klimovič, Šimon</creatorcontrib><creatorcontrib>Víšová, Ivana</creatorcontrib><creatorcontrib>Přibyl, Jan</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Pantůček, Roman</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Mašlaňová, Ivana</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><title>Nanoscale</title><description>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</description><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Atomic force microscopy</subject><subject>Bacteria</subject><subject>Biomechanics</subject><subject>Disintegration</subject><subject>Economic impact</subject><subject>High resolution</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Phages</subject><subject>Real time</subject><subject>Stiffness</subject><subject>Surface plasmon resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWD8u_oKAFy-r-e7usRS_oOBFz2Wana0pu8maZA_9A_5uUxQRLzPvvPMwvAwhV5zdciabu5b7yEQjOB6RmWCKVVLOxfGvNuqUnKW0Y8w00sgZ-VzkMDhLuxAt0qJiSDaMewq-pWmKHRR77CENwdOIKXjwxSl4maCvshuQJue3PVYW-54WzuUQi0NDRzdgM0YXxnfYYjVg6yBjS_t9cunPHi7ISQd9wsuffk7eHu5fl0_V6uXxeblYVZbX81xpzrDVyIVFzjWXYNAYA41G1dra2NaoBqXqoCuVKyVQaTBGNLKTZmNreU5uvu-OMXxMmPJ6cOmQGzyGKa2FLn-phapVQa__obswRV_SHSgmNNeSyS_mknL1</recordid><startdate>20210821</startdate><enddate>20210821</enddate><creator>Obořilová, Radka</creator><creator>Šimečková, Hana</creator><creator>Pastucha, Matěj</creator><creator>Klimovič, Šimon</creator><creator>Víšová, Ivana</creator><creator>Přibyl, Jan</creator><creator>Vaisocherová-Lísalová, Hana</creator><creator>Pantůček, Roman</creator><creator>Skládal, Petr</creator><creator>Mašlaňová, Ivana</creator><creator>Farka, Zdeněk</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210821</creationdate><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><author>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Atomic force microscopy</topic><topic>Bacteria</topic><topic>Biomechanics</topic><topic>Disintegration</topic><topic>Economic impact</topic><topic>High resolution</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Phages</topic><topic>Real time</topic><topic>Stiffness</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Šimečková, Hana</creatorcontrib><creatorcontrib>Pastucha, Matěj</creatorcontrib><creatorcontrib>Klimovič, Šimon</creatorcontrib><creatorcontrib>Víšová, Ivana</creatorcontrib><creatorcontrib>Přibyl, Jan</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Pantůček, Roman</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Mašlaňová, Ivana</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obořilová, Radka</au><au>Šimečková, Hana</au><au>Pastucha, Matěj</au><au>Klimovič, Šimon</au><au>Víšová, Ivana</au><au>Přibyl, Jan</au><au>Vaisocherová-Lísalová, Hana</au><au>Pantůček, Roman</au><au>Skládal, Petr</au><au>Mašlaňová, Ivana</au><au>Farka, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</atitle><jtitle>Nanoscale</jtitle><date>2021-08-21</date><risdate>2021</risdate><volume>13</volume><issue>31</issue><spage>13538</spage><epage>13549</epage><pages>13538-13549</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02921e</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2021-08, Vol.13 (31), p.13538-13549 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2569382484 |
source | Royal Society Of Chemistry Journals |
subjects | Antibiotics Antiinfectives and antibacterials Atomic force microscopy Bacteria Biomechanics Disintegration Economic impact High resolution Microscopy Modulus of elasticity Phages Real time Stiffness Surface plasmon resonance |
title | Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20force%20microscopy%20and%20surface%20plasmon%20resonance%20for%20real-time%20single-cell%20monitoring%20of%20bacteriophage-mediated%20lysis%20of%20bacteria&rft.jtitle=Nanoscale&rft.au=Obo%C5%99ilov%C3%A1,%20Radka&rft.date=2021-08-21&rft.volume=13&rft.issue=31&rft.spage=13538&rft.epage=13549&rft.pages=13538-13549&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02921e&rft_dat=%3Cproquest%3E2569382484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560251530&rft_id=info:pmid/&rfr_iscdi=true |