Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria

The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-08, Vol.13 (31), p.13538-13549
Hauptverfasser: Obořilová, Radka, Šimečková, Hana, Pastucha, Matěj, Klimovič, Šimon, Víšová, Ivana, Přibyl, Jan, Vaisocherová-Lísalová, Hana, Pantůček, Roman, Skládal, Petr, Mašlaňová, Ivana, Farka, Zdeněk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13549
container_issue 31
container_start_page 13538
container_title Nanoscale
container_volume 13
creator Obořilová, Radka
Šimečková, Hana
Pastucha, Matěj
Klimovič, Šimon
Víšová, Ivana
Přibyl, Jan
Vaisocherová-Lísalová, Hana
Pantůček, Roman
Skládal, Petr
Mašlaňová, Ivana
Farka, Zdeněk
description The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
doi_str_mv 10.1039/d1nr02921e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569382484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569382484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWD8u_oKAFy-r-e7usRS_oOBFz2Wana0pu8maZA_9A_5uUxQRLzPvvPMwvAwhV5zdciabu5b7yEQjOB6RmWCKVVLOxfGvNuqUnKW0Y8w00sgZ-VzkMDhLuxAt0qJiSDaMewq-pWmKHRR77CENwdOIKXjwxSl4maCvshuQJue3PVYW-54WzuUQi0NDRzdgM0YXxnfYYjVg6yBjS_t9cunPHi7ISQd9wsuffk7eHu5fl0_V6uXxeblYVZbX81xpzrDVyIVFzjWXYNAYA41G1dra2NaoBqXqoCuVKyVQaTBGNLKTZmNreU5uvu-OMXxMmPJ6cOmQGzyGKa2FLn-phapVQa__obswRV_SHSgmNNeSyS_mknL1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560251530</pqid></control><display><type>article</type><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><source>Royal Society Of Chemistry Journals</source><creator>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</creator><creatorcontrib>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</creatorcontrib><description>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr02921e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Antibiotics ; Antiinfectives and antibacterials ; Atomic force microscopy ; Bacteria ; Biomechanics ; Disintegration ; Economic impact ; High resolution ; Microscopy ; Modulus of elasticity ; Phages ; Real time ; Stiffness ; Surface plasmon resonance</subject><ispartof>Nanoscale, 2021-08, Vol.13 (31), p.13538-13549</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Šimečková, Hana</creatorcontrib><creatorcontrib>Pastucha, Matěj</creatorcontrib><creatorcontrib>Klimovič, Šimon</creatorcontrib><creatorcontrib>Víšová, Ivana</creatorcontrib><creatorcontrib>Přibyl, Jan</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Pantůček, Roman</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Mašlaňová, Ivana</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><title>Nanoscale</title><description>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</description><subject>Antibiotics</subject><subject>Antiinfectives and antibacterials</subject><subject>Atomic force microscopy</subject><subject>Bacteria</subject><subject>Biomechanics</subject><subject>Disintegration</subject><subject>Economic impact</subject><subject>High resolution</subject><subject>Microscopy</subject><subject>Modulus of elasticity</subject><subject>Phages</subject><subject>Real time</subject><subject>Stiffness</subject><subject>Surface plasmon resonance</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoWD8u_oKAFy-r-e7usRS_oOBFz2Wana0pu8maZA_9A_5uUxQRLzPvvPMwvAwhV5zdciabu5b7yEQjOB6RmWCKVVLOxfGvNuqUnKW0Y8w00sgZ-VzkMDhLuxAt0qJiSDaMewq-pWmKHRR77CENwdOIKXjwxSl4maCvshuQJue3PVYW-54WzuUQi0NDRzdgM0YXxnfYYjVg6yBjS_t9cunPHi7ISQd9wsuffk7eHu5fl0_V6uXxeblYVZbX81xpzrDVyIVFzjWXYNAYA41G1dra2NaoBqXqoCuVKyVQaTBGNLKTZmNreU5uvu-OMXxMmPJ6cOmQGzyGKa2FLn-phapVQa__obswRV_SHSgmNNeSyS_mknL1</recordid><startdate>20210821</startdate><enddate>20210821</enddate><creator>Obořilová, Radka</creator><creator>Šimečková, Hana</creator><creator>Pastucha, Matěj</creator><creator>Klimovič, Šimon</creator><creator>Víšová, Ivana</creator><creator>Přibyl, Jan</creator><creator>Vaisocherová-Lísalová, Hana</creator><creator>Pantůček, Roman</creator><creator>Skládal, Petr</creator><creator>Mašlaňová, Ivana</creator><creator>Farka, Zdeněk</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210821</creationdate><title>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</title><author>Obořilová, Radka ; Šimečková, Hana ; Pastucha, Matěj ; Klimovič, Šimon ; Víšová, Ivana ; Přibyl, Jan ; Vaisocherová-Lísalová, Hana ; Pantůček, Roman ; Skládal, Petr ; Mašlaňová, Ivana ; Farka, Zdeněk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-510ed5e12ce11513a6e666a95e4dc86cd649e34fafe341442e45a66293f36bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibiotics</topic><topic>Antiinfectives and antibacterials</topic><topic>Atomic force microscopy</topic><topic>Bacteria</topic><topic>Biomechanics</topic><topic>Disintegration</topic><topic>Economic impact</topic><topic>High resolution</topic><topic>Microscopy</topic><topic>Modulus of elasticity</topic><topic>Phages</topic><topic>Real time</topic><topic>Stiffness</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obořilová, Radka</creatorcontrib><creatorcontrib>Šimečková, Hana</creatorcontrib><creatorcontrib>Pastucha, Matěj</creatorcontrib><creatorcontrib>Klimovič, Šimon</creatorcontrib><creatorcontrib>Víšová, Ivana</creatorcontrib><creatorcontrib>Přibyl, Jan</creatorcontrib><creatorcontrib>Vaisocherová-Lísalová, Hana</creatorcontrib><creatorcontrib>Pantůček, Roman</creatorcontrib><creatorcontrib>Skládal, Petr</creatorcontrib><creatorcontrib>Mašlaňová, Ivana</creatorcontrib><creatorcontrib>Farka, Zdeněk</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obořilová, Radka</au><au>Šimečková, Hana</au><au>Pastucha, Matěj</au><au>Klimovič, Šimon</au><au>Víšová, Ivana</au><au>Přibyl, Jan</au><au>Vaisocherová-Lísalová, Hana</au><au>Pantůček, Roman</au><au>Skládal, Petr</au><au>Mašlaňová, Ivana</au><au>Farka, Zdeněk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria</atitle><jtitle>Nanoscale</jtitle><date>2021-08-21</date><risdate>2021</risdate><volume>13</volume><issue>31</issue><spage>13538</spage><epage>13549</epage><pages>13538-13549</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage–bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force–distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr02921e</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-08, Vol.13 (31), p.13538-13549
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2569382484
source Royal Society Of Chemistry Journals
subjects Antibiotics
Antiinfectives and antibacterials
Atomic force microscopy
Bacteria
Biomechanics
Disintegration
Economic impact
High resolution
Microscopy
Modulus of elasticity
Phages
Real time
Stiffness
Surface plasmon resonance
title Atomic force microscopy and surface plasmon resonance for real-time single-cell monitoring of bacteriophage-mediated lysis of bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20force%20microscopy%20and%20surface%20plasmon%20resonance%20for%20real-time%20single-cell%20monitoring%20of%20bacteriophage-mediated%20lysis%20of%20bacteria&rft.jtitle=Nanoscale&rft.au=Obo%C5%99ilov%C3%A1,%20Radka&rft.date=2021-08-21&rft.volume=13&rft.issue=31&rft.spage=13538&rft.epage=13549&rft.pages=13538-13549&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr02921e&rft_dat=%3Cproquest%3E2569382484%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560251530&rft_id=info:pmid/&rfr_iscdi=true