Transcriptional regulation of plant seed development
Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in r...
Gespeichert in:
Veröffentlicht in: | Physiologia plantarum 2021-12, Vol.173 (4), p.2013-2025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2025 |
---|---|
container_issue | 4 |
container_start_page | 2013 |
container_title | Physiologia plantarum |
container_volume | 173 |
creator | Su, Liyang Wan, Siqi Zhou, Junmei Shao, Qing Song Xing, Bingcong |
description | Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes. |
doi_str_mv | 10.1111/ppl.13548 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569379827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569379827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs7pwf-g4EUP3fKSpk2OMvwFBXeY55A1r9KRtTVplf33ZtaTYC6PPD4vvHwJuQa6gHiWfe8WwEUmT8gMuFIppyI7JTNKOaSKQ3FOLkLYUQp5DmxGso03bah80w9N1xqXeHwfnTlekq5OemfaIQmINrH4ia7r99gOl-SsNi7g1W-dk7fHh83qOS1fn15W92VacU5lyqVFi5IWQnFWC6hs7BjMsGJbzoWM-8rcsLyArcDM5ILZLRRKWKAZUAZ8Tm6nd3vffYwYBr1vQoUuLoXdGDQTueKFkqyI9OYP3XWjjx-KKqdcMQmZiupuUpXvQvBY6943e-MPGqg-5qdjfvonv2iXk_1qHB7-h3q9LqeJbwTEb7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603928149</pqid></control><display><type>article</type><title>Transcriptional regulation of plant seed development</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</creator><creatorcontrib>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</creatorcontrib><description>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13548</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Angiosperms ; Embryogenesis ; Fatty acids ; Gene regulation ; Gymnosperms ; Heme ; Homeobox ; Oils & fats ; Organs ; Plant growth ; Reproductive organs ; Seeds ; Transcription factors</subject><ispartof>Physiologia plantarum, 2021-12, Vol.173 (4), p.2013-2025</ispartof><rights>2021 Scandinavian Plant Physiology Society.</rights><rights>2021 Scandinavian Plant Physiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</citedby><cites>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</cites><orcidid>0000-0001-8595-6105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13548$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13548$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Su, Liyang</creatorcontrib><creatorcontrib>Wan, Siqi</creatorcontrib><creatorcontrib>Zhou, Junmei</creatorcontrib><creatorcontrib>Shao, Qing Song</creatorcontrib><creatorcontrib>Xing, Bingcong</creatorcontrib><title>Transcriptional regulation of plant seed development</title><title>Physiologia plantarum</title><description>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</description><subject>Accumulation</subject><subject>Angiosperms</subject><subject>Embryogenesis</subject><subject>Fatty acids</subject><subject>Gene regulation</subject><subject>Gymnosperms</subject><subject>Heme</subject><subject>Homeobox</subject><subject>Oils & fats</subject><subject>Organs</subject><subject>Plant growth</subject><subject>Reproductive organs</subject><subject>Seeds</subject><subject>Transcription factors</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs7pwf-g4EUP3fKSpk2OMvwFBXeY55A1r9KRtTVplf33ZtaTYC6PPD4vvHwJuQa6gHiWfe8WwEUmT8gMuFIppyI7JTNKOaSKQ3FOLkLYUQp5DmxGso03bah80w9N1xqXeHwfnTlekq5OemfaIQmINrH4ia7r99gOl-SsNi7g1W-dk7fHh83qOS1fn15W92VacU5lyqVFi5IWQnFWC6hs7BjMsGJbzoWM-8rcsLyArcDM5ILZLRRKWKAZUAZ8Tm6nd3vffYwYBr1vQoUuLoXdGDQTueKFkqyI9OYP3XWjjx-KKqdcMQmZiupuUpXvQvBY6943e-MPGqg-5qdjfvonv2iXk_1qHB7-h3q9LqeJbwTEb7U</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Su, Liyang</creator><creator>Wan, Siqi</creator><creator>Zhou, Junmei</creator><creator>Shao, Qing Song</creator><creator>Xing, Bingcong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8595-6105</orcidid></search><sort><creationdate>202112</creationdate><title>Transcriptional regulation of plant seed development</title><author>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>Angiosperms</topic><topic>Embryogenesis</topic><topic>Fatty acids</topic><topic>Gene regulation</topic><topic>Gymnosperms</topic><topic>Heme</topic><topic>Homeobox</topic><topic>Oils & fats</topic><topic>Organs</topic><topic>Plant growth</topic><topic>Reproductive organs</topic><topic>Seeds</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Liyang</creatorcontrib><creatorcontrib>Wan, Siqi</creatorcontrib><creatorcontrib>Zhou, Junmei</creatorcontrib><creatorcontrib>Shao, Qing Song</creatorcontrib><creatorcontrib>Xing, Bingcong</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Liyang</au><au>Wan, Siqi</au><au>Zhou, Junmei</au><au>Shao, Qing Song</au><au>Xing, Bingcong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional regulation of plant seed development</atitle><jtitle>Physiologia plantarum</jtitle><date>2021-12</date><risdate>2021</risdate><volume>173</volume><issue>4</issue><spage>2013</spage><epage>2025</epage><pages>2013-2025</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ppl.13548</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8595-6105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9317 |
ispartof | Physiologia plantarum, 2021-12, Vol.173 (4), p.2013-2025 |
issn | 0031-9317 1399-3054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2569379827 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accumulation Angiosperms Embryogenesis Fatty acids Gene regulation Gymnosperms Heme Homeobox Oils & fats Organs Plant growth Reproductive organs Seeds Transcription factors |
title | Transcriptional regulation of plant seed development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20regulation%20of%20plant%20seed%20development&rft.jtitle=Physiologia%20plantarum&rft.au=Su,%20Liyang&rft.date=2021-12&rft.volume=173&rft.issue=4&rft.spage=2013&rft.epage=2025&rft.pages=2013-2025&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13548&rft_dat=%3Cproquest_cross%3E2569379827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603928149&rft_id=info:pmid/&rfr_iscdi=true |