Transcriptional regulation of plant seed development

Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiologia plantarum 2021-12, Vol.173 (4), p.2013-2025
Hauptverfasser: Su, Liyang, Wan, Siqi, Zhou, Junmei, Shao, Qing Song, Xing, Bingcong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2025
container_issue 4
container_start_page 2013
container_title Physiologia plantarum
container_volume 173
creator Su, Liyang
Wan, Siqi
Zhou, Junmei
Shao, Qing Song
Xing, Bingcong
description Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.
doi_str_mv 10.1111/ppl.13548
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569379827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2569379827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs7pwf-g4EUP3fKSpk2OMvwFBXeY55A1r9KRtTVplf33ZtaTYC6PPD4vvHwJuQa6gHiWfe8WwEUmT8gMuFIppyI7JTNKOaSKQ3FOLkLYUQp5DmxGso03bah80w9N1xqXeHwfnTlekq5OemfaIQmINrH4ia7r99gOl-SsNi7g1W-dk7fHh83qOS1fn15W92VacU5lyqVFi5IWQnFWC6hs7BjMsGJbzoWM-8rcsLyArcDM5ILZLRRKWKAZUAZ8Tm6nd3vffYwYBr1vQoUuLoXdGDQTueKFkqyI9OYP3XWjjx-KKqdcMQmZiupuUpXvQvBY6943e-MPGqg-5qdjfvonv2iXk_1qHB7-h3q9LqeJbwTEb7U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603928149</pqid></control><display><type>article</type><title>Transcriptional regulation of plant seed development</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</creator><creatorcontrib>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</creatorcontrib><description>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</description><identifier>ISSN: 0031-9317</identifier><identifier>EISSN: 1399-3054</identifier><identifier>DOI: 10.1111/ppl.13548</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Angiosperms ; Embryogenesis ; Fatty acids ; Gene regulation ; Gymnosperms ; Heme ; Homeobox ; Oils &amp; fats ; Organs ; Plant growth ; Reproductive organs ; Seeds ; Transcription factors</subject><ispartof>Physiologia plantarum, 2021-12, Vol.173 (4), p.2013-2025</ispartof><rights>2021 Scandinavian Plant Physiology Society.</rights><rights>2021 Scandinavian Plant Physiology Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</citedby><cites>FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</cites><orcidid>0000-0001-8595-6105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fppl.13548$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fppl.13548$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Su, Liyang</creatorcontrib><creatorcontrib>Wan, Siqi</creatorcontrib><creatorcontrib>Zhou, Junmei</creatorcontrib><creatorcontrib>Shao, Qing Song</creatorcontrib><creatorcontrib>Xing, Bingcong</creatorcontrib><title>Transcriptional regulation of plant seed development</title><title>Physiologia plantarum</title><description>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</description><subject>Accumulation</subject><subject>Angiosperms</subject><subject>Embryogenesis</subject><subject>Fatty acids</subject><subject>Gene regulation</subject><subject>Gymnosperms</subject><subject>Heme</subject><subject>Homeobox</subject><subject>Oils &amp; fats</subject><subject>Organs</subject><subject>Plant growth</subject><subject>Reproductive organs</subject><subject>Seeds</subject><subject>Transcription factors</subject><issn>0031-9317</issn><issn>1399-3054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs7pwf-g4EUP3fKSpk2OMvwFBXeY55A1r9KRtTVplf33ZtaTYC6PPD4vvHwJuQa6gHiWfe8WwEUmT8gMuFIppyI7JTNKOaSKQ3FOLkLYUQp5DmxGso03bah80w9N1xqXeHwfnTlekq5OemfaIQmINrH4ia7r99gOl-SsNi7g1W-dk7fHh83qOS1fn15W92VacU5lyqVFi5IWQnFWC6hs7BjMsGJbzoWM-8rcsLyArcDM5ILZLRRKWKAZUAZ8Tm6nd3vffYwYBr1vQoUuLoXdGDQTueKFkqyI9OYP3XWjjx-KKqdcMQmZiupuUpXvQvBY6943e-MPGqg-5qdjfvonv2iXk_1qHB7-h3q9LqeJbwTEb7U</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Su, Liyang</creator><creator>Wan, Siqi</creator><creator>Zhou, Junmei</creator><creator>Shao, Qing Song</creator><creator>Xing, Bingcong</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8595-6105</orcidid></search><sort><creationdate>202112</creationdate><title>Transcriptional regulation of plant seed development</title><author>Su, Liyang ; Wan, Siqi ; Zhou, Junmei ; Shao, Qing Song ; Xing, Bingcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3308-38dede8075932f51cd38dae4ec2b335811186a2671b5e4a652db1795d10410213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accumulation</topic><topic>Angiosperms</topic><topic>Embryogenesis</topic><topic>Fatty acids</topic><topic>Gene regulation</topic><topic>Gymnosperms</topic><topic>Heme</topic><topic>Homeobox</topic><topic>Oils &amp; fats</topic><topic>Organs</topic><topic>Plant growth</topic><topic>Reproductive organs</topic><topic>Seeds</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Liyang</creatorcontrib><creatorcontrib>Wan, Siqi</creatorcontrib><creatorcontrib>Zhou, Junmei</creatorcontrib><creatorcontrib>Shao, Qing Song</creatorcontrib><creatorcontrib>Xing, Bingcong</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Physiologia plantarum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Liyang</au><au>Wan, Siqi</au><au>Zhou, Junmei</au><au>Shao, Qing Song</au><au>Xing, Bingcong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptional regulation of plant seed development</atitle><jtitle>Physiologia plantarum</jtitle><date>2021-12</date><risdate>2021</risdate><volume>173</volume><issue>4</issue><spage>2013</spage><epage>2025</epage><pages>2013-2025</pages><issn>0031-9317</issn><eissn>1399-3054</eissn><abstract>Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL‐related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple‐TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ppl.13548</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8595-6105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9317
ispartof Physiologia plantarum, 2021-12, Vol.173 (4), p.2013-2025
issn 0031-9317
1399-3054
language eng
recordid cdi_proquest_miscellaneous_2569379827
source Wiley Online Library Journals Frontfile Complete
subjects Accumulation
Angiosperms
Embryogenesis
Fatty acids
Gene regulation
Gymnosperms
Heme
Homeobox
Oils & fats
Organs
Plant growth
Reproductive organs
Seeds
Transcription factors
title Transcriptional regulation of plant seed development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptional%20regulation%20of%20plant%20seed%20development&rft.jtitle=Physiologia%20plantarum&rft.au=Su,%20Liyang&rft.date=2021-12&rft.volume=173&rft.issue=4&rft.spage=2013&rft.epage=2025&rft.pages=2013-2025&rft.issn=0031-9317&rft.eissn=1399-3054&rft_id=info:doi/10.1111/ppl.13548&rft_dat=%3Cproquest_cross%3E2569379827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603928149&rft_id=info:pmid/&rfr_iscdi=true