Surface morphology controls water dissociation on hydrated IrO2 nanoparticles

Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-09, Vol.13 (34), p.14480-14489
Hauptverfasser: González, Danilo, Sodupe, Mariona, Rodríguez-Santiago, Luis, Solans-Monfort, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14489
container_issue 34
container_start_page 14480
container_title Nanoscale
container_volume 13
creator González, Danilo
Sodupe, Mariona
Rodríguez-Santiago, Luis
Solans-Monfort, Xavier
description Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir–H2O interactions, which favors water dissociation. In contrast, Ir–H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.
doi_str_mv 10.1039/d1nr03592d
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2569376563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568256909</sourcerecordid><originalsourceid>FETCH-LOGICAL-p182t-fcddcb2ac9b516152f7bfee435acb92b8b2e0d3a78f62da7770a442d2ccd3e3</originalsourceid><addsrcrecordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvR5GYmmVlK8VGodFH35eYxdso0GZMM0n_viOJCOHAunI_DPYRcc3bHmWjuLfeRiaoBe0JmwEpWCKHg9O-W5Tm5SGnPmGyEFDPyuhlji8bRQ4jDLvTh_UhN8DmGPtFPzC5S26UUTIe5C55O2h1tnAJLl3EN1KMPA8bcmd6lS3LWYp_c1a_Pyebp8W3xUqzWz8vFw6oYeA25aI21RgOaRldc8gpapVvnSlGh0Q3oWoNjVqCqWwkWlVIMyxIsGGOFE3Ny-9M6xPAxupS3hy4Z1_foXRjTFqppnJKVFBN68w_dhzH66bdvqv4mWSO-AD8WXuY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568256909</pqid></control><display><type>article</type><title>Surface morphology controls water dissociation on hydrated IrO2 nanoparticles</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>González, Danilo ; Sodupe, Mariona ; Rodríguez-Santiago, Luis ; Solans-Monfort, Xavier</creator><creatorcontrib>González, Danilo ; Sodupe, Mariona ; Rodríguez-Santiago, Luis ; Solans-Monfort, Xavier</creatorcontrib><description>Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir–H2O interactions, which favors water dissociation. In contrast, Ir–H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr03592d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Aqueous solutions ; Coordination ; Electrocatalysts ; Energy of dissociation ; Hydrogen bonding ; Iridium ; Molecular structure ; Morphology ; Nanoparticles ; Oxygen evolution reactions ; Surface chemistry</subject><ispartof>Nanoscale, 2021-09, Vol.13 (34), p.14480-14489</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>González, Danilo</creatorcontrib><creatorcontrib>Sodupe, Mariona</creatorcontrib><creatorcontrib>Rodríguez-Santiago, Luis</creatorcontrib><creatorcontrib>Solans-Monfort, Xavier</creatorcontrib><title>Surface morphology controls water dissociation on hydrated IrO2 nanoparticles</title><title>Nanoscale</title><description>Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir–H2O interactions, which favors water dissociation. In contrast, Ir–H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.</description><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Coordination</subject><subject>Electrocatalysts</subject><subject>Energy of dissociation</subject><subject>Hydrogen bonding</subject><subject>Iridium</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Oxygen evolution reactions</subject><subject>Surface chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdj0tLAzEUhYMoWKsbf0HAjZvR5GYmmVlK8VGodFH35eYxdso0GZMM0n_viOJCOHAunI_DPYRcc3bHmWjuLfeRiaoBe0JmwEpWCKHg9O-W5Tm5SGnPmGyEFDPyuhlji8bRQ4jDLvTh_UhN8DmGPtFPzC5S26UUTIe5C55O2h1tnAJLl3EN1KMPA8bcmd6lS3LWYp_c1a_Pyebp8W3xUqzWz8vFw6oYeA25aI21RgOaRldc8gpapVvnSlGh0Q3oWoNjVqCqWwkWlVIMyxIsGGOFE3Ny-9M6xPAxupS3hy4Z1_foXRjTFqppnJKVFBN68w_dhzH66bdvqv4mWSO-AD8WXuY</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>González, Danilo</creator><creator>Sodupe, Mariona</creator><creator>Rodríguez-Santiago, Luis</creator><creator>Solans-Monfort, Xavier</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20210914</creationdate><title>Surface morphology controls water dissociation on hydrated IrO2 nanoparticles</title><author>González, Danilo ; Sodupe, Mariona ; Rodríguez-Santiago, Luis ; Solans-Monfort, Xavier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p182t-fcddcb2ac9b516152f7bfee435acb92b8b2e0d3a78f62da7770a442d2ccd3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Coordination</topic><topic>Electrocatalysts</topic><topic>Energy of dissociation</topic><topic>Hydrogen bonding</topic><topic>Iridium</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Oxygen evolution reactions</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González, Danilo</creatorcontrib><creatorcontrib>Sodupe, Mariona</creatorcontrib><creatorcontrib>Rodríguez-Santiago, Luis</creatorcontrib><creatorcontrib>Solans-Monfort, Xavier</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González, Danilo</au><au>Sodupe, Mariona</au><au>Rodríguez-Santiago, Luis</au><au>Solans-Monfort, Xavier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface morphology controls water dissociation on hydrated IrO2 nanoparticles</atitle><jtitle>Nanoscale</jtitle><date>2021-09-14</date><risdate>2021</risdate><volume>13</volume><issue>34</issue><spage>14480</spage><epage>14489</epage><pages>14480-14489</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir–H2O interactions, which favors water dissociation. In contrast, Ir–H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1nr03592d</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2021-09, Vol.13 (34), p.14480-14489
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2569376563
source Royal Society Of Chemistry Journals 2008-
subjects Adsorption
Aqueous solutions
Coordination
Electrocatalysts
Energy of dissociation
Hydrogen bonding
Iridium
Molecular structure
Morphology
Nanoparticles
Oxygen evolution reactions
Surface chemistry
title Surface morphology controls water dissociation on hydrated IrO2 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T10%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20morphology%20controls%20water%20dissociation%20on%20hydrated%20IrO2%20nanoparticles&rft.jtitle=Nanoscale&rft.au=Gonz%C3%A1lez,%20Danilo&rft.date=2021-09-14&rft.volume=13&rft.issue=34&rft.spage=14480&rft.epage=14489&rft.pages=14480-14489&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr03592d&rft_dat=%3Cproquest%3E2568256909%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568256909&rft_id=info:pmid/&rfr_iscdi=true