Knowledge-based distribution system analysis and reconfiguration
The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system sh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 1990-08, Vol.5 (3), p.744-749 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 749 |
---|---|
container_issue | 3 |
container_start_page | 744 |
container_title | IEEE transactions on power systems |
container_volume | 5 |
creator | Chang, G. Zrida, J. Birdwell, J.D. |
description | The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.< > |
doi_str_mv | 10.1109/59.65901 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25690734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>65901</ieee_id><sourcerecordid>25690734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKxV8OotiIiX1P3IbrI3pfiFBS96XnY3k7qSJnUnQfrvTU3p1dMMzMM7wxByzuiMMapvpZ4pqSk7IBMmZZFSletDMqFFIdNCS3pMThC_KKVqGEzI3WvT_tRQLiF1FqFMyoBdDK7vQtskuMEOVoltbL3BgENTJhF821Rh2Ue7NafkqLI1wtmuTsnH48P7_DldvD29zO8XqReKdelwkQPNS0WpdBnNGLdeUwlZpTxXpQNVOK8802WROc8Lxa2rtPW5y71jvBJTcjnmttgFgz504D-HSxrwnVGS50LwAV2PaB3b7x6wM6uAHuraNtD2aHghBONK_A-l0jQX2QBvRuhjixihMusYVjZuDKNm-3Ajtfl7-ECvdpkWva2raBsfcO-l5FTJ7eqLkQUA2E_HiF_5C4dZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25690734</pqid></control><display><type>article</type><title>Knowledge-based distribution system analysis and reconfiguration</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, G. ; Zrida, J. ; Birdwell, J.D.</creator><creatorcontrib>Chang, G. ; Zrida, J. ; Birdwell, J.D.</creatorcontrib><description>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.< ></description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.65901</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>240200 - Power System Networks, Transmission & Distribution- (1990-) ; 990200 - Mathematics & Computers ; Applied sciences ; Artificial intelligence ; Clustering algorithms ; COMPUTER CODES ; COMPUTERIZED CONTROL SYSTEMS ; CONTROL SYSTEMS ; D CODES ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; EXPERT SYSTEMS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Humans ; KNOWLEDGE BASE ; Knowledge based systems ; POWER DISTRIBUTION SYSTEMS ; Power networks and lines ; Power system analysis computing ; POWER TRANSMISSION AND DISTRIBUTION ; Prototypes ; Software packages ; Standby generators ; Theory. Simulation ; User interfaces</subject><ispartof>IEEE transactions on power systems, 1990-08, Vol.5 (3), p.744-749</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</citedby><cites>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/65901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/65901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5520653$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6527332$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, G.</creatorcontrib><creatorcontrib>Zrida, J.</creatorcontrib><creatorcontrib>Birdwell, J.D.</creatorcontrib><title>Knowledge-based distribution system analysis and reconfiguration</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.< ></description><subject>240200 - Power System Networks, Transmission & Distribution- (1990-)</subject><subject>990200 - Mathematics & Computers</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering algorithms</subject><subject>COMPUTER CODES</subject><subject>COMPUTERIZED CONTROL SYSTEMS</subject><subject>CONTROL SYSTEMS</subject><subject>D CODES</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>EXPERT SYSTEMS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Humans</subject><subject>KNOWLEDGE BASE</subject><subject>Knowledge based systems</subject><subject>POWER DISTRIBUTION SYSTEMS</subject><subject>Power networks and lines</subject><subject>Power system analysis computing</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Prototypes</subject><subject>Software packages</subject><subject>Standby generators</subject><subject>Theory. Simulation</subject><subject>User interfaces</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFKxV8OotiIiX1P3IbrI3pfiFBS96XnY3k7qSJnUnQfrvTU3p1dMMzMM7wxByzuiMMapvpZ4pqSk7IBMmZZFSletDMqFFIdNCS3pMThC_KKVqGEzI3WvT_tRQLiF1FqFMyoBdDK7vQtskuMEOVoltbL3BgENTJhF821Rh2Ue7NafkqLI1wtmuTsnH48P7_DldvD29zO8XqReKdelwkQPNS0WpdBnNGLdeUwlZpTxXpQNVOK8802WROc8Lxa2rtPW5y71jvBJTcjnmttgFgz504D-HSxrwnVGS50LwAV2PaB3b7x6wM6uAHuraNtD2aHghBONK_A-l0jQX2QBvRuhjixihMusYVjZuDKNm-3Ajtfl7-ECvdpkWva2raBsfcO-l5FTJ7eqLkQUA2E_HiF_5C4dZ</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>Chang, G.</creator><creator>Zrida, J.</creator><creator>Birdwell, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>19900801</creationdate><title>Knowledge-based distribution system analysis and reconfiguration</title><author>Chang, G. ; Zrida, J. ; Birdwell, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>240200 - Power System Networks, Transmission & Distribution- (1990-)</topic><topic>990200 - Mathematics & Computers</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering algorithms</topic><topic>COMPUTER CODES</topic><topic>COMPUTERIZED CONTROL SYSTEMS</topic><topic>CONTROL SYSTEMS</topic><topic>D CODES</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>EXPERT SYSTEMS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Humans</topic><topic>KNOWLEDGE BASE</topic><topic>Knowledge based systems</topic><topic>POWER DISTRIBUTION SYSTEMS</topic><topic>Power networks and lines</topic><topic>Power system analysis computing</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Prototypes</topic><topic>Software packages</topic><topic>Standby generators</topic><topic>Theory. Simulation</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, G.</creatorcontrib><creatorcontrib>Zrida, J.</creatorcontrib><creatorcontrib>Birdwell, J.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, G.</au><au>Zrida, J.</au><au>Birdwell, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-based distribution system analysis and reconfiguration</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1990-08-01</date><risdate>1990</risdate><volume>5</volume><issue>3</issue><spage>744</spage><epage>749</epage><pages>744-749</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.< ></abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.65901</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 1990-08, Vol.5 (3), p.744-749 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_miscellaneous_25690734 |
source | IEEE Electronic Library (IEL) |
subjects | 240200 - Power System Networks, Transmission & Distribution- (1990-) 990200 - Mathematics & Computers Applied sciences Artificial intelligence Clustering algorithms COMPUTER CODES COMPUTERIZED CONTROL SYSTEMS CONTROL SYSTEMS D CODES Electrical engineering. Electrical power engineering Electrical power engineering Exact sciences and technology EXPERT SYSTEMS GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE Humans KNOWLEDGE BASE Knowledge based systems POWER DISTRIBUTION SYSTEMS Power networks and lines Power system analysis computing POWER TRANSMISSION AND DISTRIBUTION Prototypes Software packages Standby generators Theory. Simulation User interfaces |
title | Knowledge-based distribution system analysis and reconfiguration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-based%20distribution%20system%20analysis%20and%20reconfiguration&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chang,%20G.&rft.date=1990-08-01&rft.volume=5&rft.issue=3&rft.spage=744&rft.epage=749&rft.pages=744-749&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.65901&rft_dat=%3Cproquest_RIE%3E25690734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25690734&rft_id=info:pmid/&rft_ieee_id=65901&rfr_iscdi=true |