Knowledge-based distribution system analysis and reconfiguration

The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1990-08, Vol.5 (3), p.744-749
Hauptverfasser: Chang, G., Zrida, J., Birdwell, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 749
container_issue 3
container_start_page 744
container_title IEEE transactions on power systems
container_volume 5
creator Chang, G.
Zrida, J.
Birdwell, J.D.
description The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.< >
doi_str_mv 10.1109/59.65901
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_25690734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>65901</ieee_id><sourcerecordid>25690734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKxV8OotiIiX1P3IbrI3pfiFBS96XnY3k7qSJnUnQfrvTU3p1dMMzMM7wxByzuiMMapvpZ4pqSk7IBMmZZFSletDMqFFIdNCS3pMThC_KKVqGEzI3WvT_tRQLiF1FqFMyoBdDK7vQtskuMEOVoltbL3BgENTJhF821Rh2Ue7NafkqLI1wtmuTsnH48P7_DldvD29zO8XqReKdelwkQPNS0WpdBnNGLdeUwlZpTxXpQNVOK8802WROc8Lxa2rtPW5y71jvBJTcjnmttgFgz504D-HSxrwnVGS50LwAV2PaB3b7x6wM6uAHuraNtD2aHghBONK_A-l0jQX2QBvRuhjixihMusYVjZuDKNm-3Ajtfl7-ECvdpkWva2raBsfcO-l5FTJ7eqLkQUA2E_HiF_5C4dZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25690734</pqid></control><display><type>article</type><title>Knowledge-based distribution system analysis and reconfiguration</title><source>IEEE Electronic Library (IEL)</source><creator>Chang, G. ; Zrida, J. ; Birdwell, J.D.</creator><creatorcontrib>Chang, G. ; Zrida, J. ; Birdwell, J.D.</creatorcontrib><description>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.&lt; &gt;</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.65901</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>240200 - Power System Networks, Transmission &amp; Distribution- (1990-) ; 990200 - Mathematics &amp; Computers ; Applied sciences ; Artificial intelligence ; Clustering algorithms ; COMPUTER CODES ; COMPUTERIZED CONTROL SYSTEMS ; CONTROL SYSTEMS ; D CODES ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Exact sciences and technology ; EXPERT SYSTEMS ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Humans ; KNOWLEDGE BASE ; Knowledge based systems ; POWER DISTRIBUTION SYSTEMS ; Power networks and lines ; Power system analysis computing ; POWER TRANSMISSION AND DISTRIBUTION ; Prototypes ; Software packages ; Standby generators ; Theory. Simulation ; User interfaces</subject><ispartof>IEEE transactions on power systems, 1990-08, Vol.5 (3), p.744-749</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</citedby><cites>FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/65901$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,796,885,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/65901$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5520653$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/6527332$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, G.</creatorcontrib><creatorcontrib>Zrida, J.</creatorcontrib><creatorcontrib>Birdwell, J.D.</creatorcontrib><title>Knowledge-based distribution system analysis and reconfiguration</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.&lt; &gt;</description><subject>240200 - Power System Networks, Transmission &amp; Distribution- (1990-)</subject><subject>990200 - Mathematics &amp; Computers</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Clustering algorithms</subject><subject>COMPUTER CODES</subject><subject>COMPUTERIZED CONTROL SYSTEMS</subject><subject>CONTROL SYSTEMS</subject><subject>D CODES</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>EXPERT SYSTEMS</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Humans</subject><subject>KNOWLEDGE BASE</subject><subject>Knowledge based systems</subject><subject>POWER DISTRIBUTION SYSTEMS</subject><subject>Power networks and lines</subject><subject>Power system analysis computing</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>Prototypes</subject><subject>Software packages</subject><subject>Standby generators</subject><subject>Theory. Simulation</subject><subject>User interfaces</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0E1Lw0AQBuBFFKxV8OotiIiX1P3IbrI3pfiFBS96XnY3k7qSJnUnQfrvTU3p1dMMzMM7wxByzuiMMapvpZ4pqSk7IBMmZZFSletDMqFFIdNCS3pMThC_KKVqGEzI3WvT_tRQLiF1FqFMyoBdDK7vQtskuMEOVoltbL3BgENTJhF821Rh2Ue7NafkqLI1wtmuTsnH48P7_DldvD29zO8XqReKdelwkQPNS0WpdBnNGLdeUwlZpTxXpQNVOK8802WROc8Lxa2rtPW5y71jvBJTcjnmttgFgz504D-HSxrwnVGS50LwAV2PaB3b7x6wM6uAHuraNtD2aHghBONK_A-l0jQX2QBvRuhjixihMusYVjZuDKNm-3Ajtfl7-ECvdpkWva2raBsfcO-l5FTJ7eqLkQUA2E_HiF_5C4dZ</recordid><startdate>19900801</startdate><enddate>19900801</enddate><creator>Chang, G.</creator><creator>Zrida, J.</creator><creator>Birdwell, J.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>19900801</creationdate><title>Knowledge-based distribution system analysis and reconfiguration</title><author>Chang, G. ; Zrida, J. ; Birdwell, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-901be92d6005b40412ac905e4f6c26dbe68bc6c19d84bc2862abf9ac7b7cb12f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>240200 - Power System Networks, Transmission &amp; Distribution- (1990-)</topic><topic>990200 - Mathematics &amp; Computers</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Clustering algorithms</topic><topic>COMPUTER CODES</topic><topic>COMPUTERIZED CONTROL SYSTEMS</topic><topic>CONTROL SYSTEMS</topic><topic>D CODES</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>EXPERT SYSTEMS</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Humans</topic><topic>KNOWLEDGE BASE</topic><topic>Knowledge based systems</topic><topic>POWER DISTRIBUTION SYSTEMS</topic><topic>Power networks and lines</topic><topic>Power system analysis computing</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>Prototypes</topic><topic>Software packages</topic><topic>Standby generators</topic><topic>Theory. Simulation</topic><topic>User interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, G.</creatorcontrib><creatorcontrib>Zrida, J.</creatorcontrib><creatorcontrib>Birdwell, J.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chang, G.</au><au>Zrida, J.</au><au>Birdwell, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge-based distribution system analysis and reconfiguration</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>1990-08-01</date><risdate>1990</risdate><volume>5</volume><issue>3</issue><spage>744</spage><epage>749</epage><pages>744-749</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>The development of a knowledge-based software package for the analysis and control of electric distribution networks is discussed. A relational knowledge base, implemented in Prolog, is used to insure fast access to the data and an efficient post-reconfiguration update algorithm. An expert system shell DECIDE, is used to interpret human knowledge coded as knowledge clusters, and to provide a menu-driven user interface. The knowledge-based system described here has the following advantages: its expert system shell provides 'backup' and 'explanation' facilities; it can generate all the possible network reconfigurations and recommend the best choice; and the Prolog implementation of the algorithms is easy to maintain. The knowledge base is easy to expand and can be modified during execution. The prototype system demonstrates that artificial intelligence techniques can be used in power system analysis and reconfiguration, and provides a platform on which a base future research on the utility of expert system technology in distribution automation.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/59.65901</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 1990-08, Vol.5 (3), p.744-749
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_miscellaneous_25690734
source IEEE Electronic Library (IEL)
subjects 240200 - Power System Networks, Transmission & Distribution- (1990-)
990200 - Mathematics & Computers
Applied sciences
Artificial intelligence
Clustering algorithms
COMPUTER CODES
COMPUTERIZED CONTROL SYSTEMS
CONTROL SYSTEMS
D CODES
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
EXPERT SYSTEMS
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Humans
KNOWLEDGE BASE
Knowledge based systems
POWER DISTRIBUTION SYSTEMS
Power networks and lines
Power system analysis computing
POWER TRANSMISSION AND DISTRIBUTION
Prototypes
Software packages
Standby generators
Theory. Simulation
User interfaces
title Knowledge-based distribution system analysis and reconfiguration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge-based%20distribution%20system%20analysis%20and%20reconfiguration&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Chang,%20G.&rft.date=1990-08-01&rft.volume=5&rft.issue=3&rft.spage=744&rft.epage=749&rft.pages=744-749&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.65901&rft_dat=%3Cproquest_RIE%3E25690734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25690734&rft_id=info:pmid/&rft_ieee_id=65901&rfr_iscdi=true