Reflection-mode acousto-optic imaging using plane wave ultrasound pulses
Significance: Performance of an acousto-optic imaging system is limited by light fluence rate and acoustic pressure field distributions characteristics. In optically scattering media, the former determines the achievable contrast, whereas the latter the imaging resolution. The system parameters can...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical optics 2021-09, Vol.26 (9), p.096001-096001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 096001 |
---|---|
container_issue | 9 |
container_start_page | 096001 |
container_title | Journal of biomedical optics |
container_volume | 26 |
creator | Nowak, Lukasz J Steenbergen, Wiendelt |
description | Significance: Performance of an acousto-optic imaging system is limited by light fluence rate and acoustic pressure field distributions characteristics. In optically scattering media, the former determines the achievable contrast, whereas the latter the imaging resolution. The system parameters can be shaped by changing relative positions of ultrasound (US) transducer array and optodes. However, in the case of many potential clinical applications, optimization possibilities in this regard are limited, as a sample is accessible from one side only and using a water tank for coupling is not feasible.
Aim: We investigate the possibilities of improving performance of an acousto-optic imaging system operating in reflection mode geometry with linear US array in direct contact with a sample using plane wave instead of focused US pulses.
Approach: Differences in acoustic pressure field distributions for various transducer excitation patterns were determined numerically and experimentally. Acousto-optic images of phantoms with and without optically absorbing inclusions were acquired by measuring laser speckle contrast decrease due to the light modulation by plane wave and focused US pulses with different apodization patterns.
Results: The residual acoustic pressure field components occupy relatively large volume and contribute to light modulation. Using nonsteered plane wave US pulses instead of focused ones allows one to mitigate their influence. It also allows one to obtain clear two-dimensional reconstructions of light fluence rate maps by shifting transducer apodization along the lateral direction.
Conclusions: Using nonsteered plane wave US pulses allows one to achieve better imaging performance than with focused pulses in the assumed system geometry. |
doi_str_mv | 10.1117/1.JBO.26.9.096001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2568598313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862305206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-64246d02383d5f1fb7309ea65591e220f88e1fdf172efb5801f10c4b3c1812f23</originalsourceid><addsrcrecordid>eNp1kUFr3DAQhUVoaNK0PyCXYuglF7szI2ssXwptSJuWQCCkZ-GVpa2D13IsO6X_Plo2TZtALtKAvnl6jyfEMUKBiNVHLH58uSyIi7qAmgFwTxyiYsiJNL5KM2iZS2Z9IN7EeAMAmmt-LQ5kWVZEpTwU51fO987OXRjyTWhd1tiwxDnkYZw7m3WbZt0N62yJ23Psm8Flv5s7ly39PDUxLEObjUsfXXwr9n2ThncP95H4-fXs-vQ8v7j89v3080VuS-Y555JKboGklq3y6FeVhNo1rFSNjgi81g5967Ei51dKA3oEW66kRY3kSR6JTzvdcVltXGvdkIz0ZpyS1emPCU1nnr4M3S-zDndGl6ArVkng5EFgCreLi7PZdNG6fpstRTekWKtaS5QJ_fAMvQnLNKR4hjSTBEXAicIdZacQ4-T8oxkEs-3JoEk9GWJTm11Paef9_ykeN_4Wk4BiB8Sxc_--fVnxHsFanKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862305206</pqid></control><display><type>article</type><title>Reflection-mode acousto-optic imaging using plane wave ultrasound pulses</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Nowak, Lukasz J ; Steenbergen, Wiendelt</creator><creatorcontrib>Nowak, Lukasz J ; Steenbergen, Wiendelt</creatorcontrib><description>Significance: Performance of an acousto-optic imaging system is limited by light fluence rate and acoustic pressure field distributions characteristics. In optically scattering media, the former determines the achievable contrast, whereas the latter the imaging resolution. The system parameters can be shaped by changing relative positions of ultrasound (US) transducer array and optodes. However, in the case of many potential clinical applications, optimization possibilities in this regard are limited, as a sample is accessible from one side only and using a water tank for coupling is not feasible.
Aim: We investigate the possibilities of improving performance of an acousto-optic imaging system operating in reflection mode geometry with linear US array in direct contact with a sample using plane wave instead of focused US pulses.
Approach: Differences in acoustic pressure field distributions for various transducer excitation patterns were determined numerically and experimentally. Acousto-optic images of phantoms with and without optically absorbing inclusions were acquired by measuring laser speckle contrast decrease due to the light modulation by plane wave and focused US pulses with different apodization patterns.
Results: The residual acoustic pressure field components occupy relatively large volume and contribute to light modulation. Using nonsteered plane wave US pulses instead of focused ones allows one to mitigate their influence. It also allows one to obtain clear two-dimensional reconstructions of light fluence rate maps by shifting transducer apodization along the lateral direction.
Conclusions: Using nonsteered plane wave US pulses allows one to achieve better imaging performance than with focused pulses in the assumed system geometry.</description><identifier>ISSN: 1083-3668</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.26.9.096001</identifier><identifier>PMID: 34472243</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Acoustics ; Acousto-optics ; Apodization ; Arrays ; Diagnostic Imaging ; Flow control ; Fluence ; Image acquisition ; Image resolution ; Imaging ; Inclusions ; Light ; Light modulation ; Optics ; Optics and Photonics ; Optimization ; Phantoms, Imaging ; Plane waves ; Reflection ; Simulation ; Transducers ; Ultrasonic imaging ; Ultrasonography ; Ultrasound ; Water tanks</subject><ispartof>Journal of biomedical optics, 2021-09, Vol.26 (9), p.096001-096001</ispartof><rights>The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.</rights><rights>2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 The Authors 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-64246d02383d5f1fb7309ea65591e220f88e1fdf172efb5801f10c4b3c1812f23</citedby><orcidid>0000-0003-3452-6791 ; 0000-0003-1155-3447</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2862305206/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2862305206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,21368,27903,27904,33723,33724,43784,53770,53772,64362,64364,64366,72216,74049</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34472243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nowak, Lukasz J</creatorcontrib><creatorcontrib>Steenbergen, Wiendelt</creatorcontrib><title>Reflection-mode acousto-optic imaging using plane wave ultrasound pulses</title><title>Journal of biomedical optics</title><addtitle>J. Biomed. Opt</addtitle><description>Significance: Performance of an acousto-optic imaging system is limited by light fluence rate and acoustic pressure field distributions characteristics. In optically scattering media, the former determines the achievable contrast, whereas the latter the imaging resolution. The system parameters can be shaped by changing relative positions of ultrasound (US) transducer array and optodes. However, in the case of many potential clinical applications, optimization possibilities in this regard are limited, as a sample is accessible from one side only and using a water tank for coupling is not feasible.
Aim: We investigate the possibilities of improving performance of an acousto-optic imaging system operating in reflection mode geometry with linear US array in direct contact with a sample using plane wave instead of focused US pulses.
Approach: Differences in acoustic pressure field distributions for various transducer excitation patterns were determined numerically and experimentally. Acousto-optic images of phantoms with and without optically absorbing inclusions were acquired by measuring laser speckle contrast decrease due to the light modulation by plane wave and focused US pulses with different apodization patterns.
Results: The residual acoustic pressure field components occupy relatively large volume and contribute to light modulation. Using nonsteered plane wave US pulses instead of focused ones allows one to mitigate their influence. It also allows one to obtain clear two-dimensional reconstructions of light fluence rate maps by shifting transducer apodization along the lateral direction.
Conclusions: Using nonsteered plane wave US pulses allows one to achieve better imaging performance than with focused pulses in the assumed system geometry.</description><subject>Acoustics</subject><subject>Acousto-optics</subject><subject>Apodization</subject><subject>Arrays</subject><subject>Diagnostic Imaging</subject><subject>Flow control</subject><subject>Fluence</subject><subject>Image acquisition</subject><subject>Image resolution</subject><subject>Imaging</subject><subject>Inclusions</subject><subject>Light</subject><subject>Light modulation</subject><subject>Optics</subject><subject>Optics and Photonics</subject><subject>Optimization</subject><subject>Phantoms, Imaging</subject><subject>Plane waves</subject><subject>Reflection</subject><subject>Simulation</subject><subject>Transducers</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><subject>Water tanks</subject><issn>1083-3668</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFr3DAQhUVoaNK0PyCXYuglF7szI2ssXwptSJuWQCCkZ-GVpa2D13IsO6X_Plo2TZtALtKAvnl6jyfEMUKBiNVHLH58uSyIi7qAmgFwTxyiYsiJNL5KM2iZS2Z9IN7EeAMAmmt-LQ5kWVZEpTwU51fO987OXRjyTWhd1tiwxDnkYZw7m3WbZt0N62yJ23Psm8Flv5s7ly39PDUxLEObjUsfXXwr9n2ThncP95H4-fXs-vQ8v7j89v3080VuS-Y555JKboGklq3y6FeVhNo1rFSNjgi81g5967Ei51dKA3oEW66kRY3kSR6JTzvdcVltXGvdkIz0ZpyS1emPCU1nnr4M3S-zDndGl6ArVkng5EFgCreLi7PZdNG6fpstRTekWKtaS5QJ_fAMvQnLNKR4hjSTBEXAicIdZacQ4-T8oxkEs-3JoEk9GWJTm11Paef9_ykeN_4Wk4BiB8Sxc_--fVnxHsFanKg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Nowak, Lukasz J</creator><creator>Steenbergen, Wiendelt</creator><general>Society of Photo-Optical Instrumentation Engineers</general><general>S P I E - International Society for</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3452-6791</orcidid><orcidid>https://orcid.org/0000-0003-1155-3447</orcidid></search><sort><creationdate>20210901</creationdate><title>Reflection-mode acousto-optic imaging using plane wave ultrasound pulses</title><author>Nowak, Lukasz J ; Steenbergen, Wiendelt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-64246d02383d5f1fb7309ea65591e220f88e1fdf172efb5801f10c4b3c1812f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Acousto-optics</topic><topic>Apodization</topic><topic>Arrays</topic><topic>Diagnostic Imaging</topic><topic>Flow control</topic><topic>Fluence</topic><topic>Image acquisition</topic><topic>Image resolution</topic><topic>Imaging</topic><topic>Inclusions</topic><topic>Light</topic><topic>Light modulation</topic><topic>Optics</topic><topic>Optics and Photonics</topic><topic>Optimization</topic><topic>Phantoms, Imaging</topic><topic>Plane waves</topic><topic>Reflection</topic><topic>Simulation</topic><topic>Transducers</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><topic>Water tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nowak, Lukasz J</creatorcontrib><creatorcontrib>Steenbergen, Wiendelt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nowak, Lukasz J</au><au>Steenbergen, Wiendelt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reflection-mode acousto-optic imaging using plane wave ultrasound pulses</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J. Biomed. Opt</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>26</volume><issue>9</issue><spage>096001</spage><epage>096001</epage><pages>096001-096001</pages><issn>1083-3668</issn><eissn>1560-2281</eissn><abstract>Significance: Performance of an acousto-optic imaging system is limited by light fluence rate and acoustic pressure field distributions characteristics. In optically scattering media, the former determines the achievable contrast, whereas the latter the imaging resolution. The system parameters can be shaped by changing relative positions of ultrasound (US) transducer array and optodes. However, in the case of many potential clinical applications, optimization possibilities in this regard are limited, as a sample is accessible from one side only and using a water tank for coupling is not feasible.
Aim: We investigate the possibilities of improving performance of an acousto-optic imaging system operating in reflection mode geometry with linear US array in direct contact with a sample using plane wave instead of focused US pulses.
Approach: Differences in acoustic pressure field distributions for various transducer excitation patterns were determined numerically and experimentally. Acousto-optic images of phantoms with and without optically absorbing inclusions were acquired by measuring laser speckle contrast decrease due to the light modulation by plane wave and focused US pulses with different apodization patterns.
Results: The residual acoustic pressure field components occupy relatively large volume and contribute to light modulation. Using nonsteered plane wave US pulses instead of focused ones allows one to mitigate their influence. It also allows one to obtain clear two-dimensional reconstructions of light fluence rate maps by shifting transducer apodization along the lateral direction.
Conclusions: Using nonsteered plane wave US pulses allows one to achieve better imaging performance than with focused pulses in the assumed system geometry.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>34472243</pmid><doi>10.1117/1.JBO.26.9.096001</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3452-6791</orcidid><orcidid>https://orcid.org/0000-0003-1155-3447</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-3668 |
ispartof | Journal of biomedical optics, 2021-09, Vol.26 (9), p.096001-096001 |
issn | 1083-3668 1560-2281 |
language | eng |
recordid | cdi_proquest_miscellaneous_2568598313 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central |
subjects | Acoustics Acousto-optics Apodization Arrays Diagnostic Imaging Flow control Fluence Image acquisition Image resolution Imaging Inclusions Light Light modulation Optics Optics and Photonics Optimization Phantoms, Imaging Plane waves Reflection Simulation Transducers Ultrasonic imaging Ultrasonography Ultrasound Water tanks |
title | Reflection-mode acousto-optic imaging using plane wave ultrasound pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reflection-mode%20acousto-optic%20imaging%20using%20plane%20wave%20ultrasound%20pulses&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Nowak,%20Lukasz%20J&rft.date=2021-09-01&rft.volume=26&rft.issue=9&rft.spage=096001&rft.epage=096001&rft.pages=096001-096001&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.26.9.096001&rft_dat=%3Cproquest_cross%3E2862305206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862305206&rft_id=info:pmid/34472243&rfr_iscdi=true |