Enantioselective synthesis of ammonium cations

Control of molecular chirality is a fundamental challenge in organic synthesis. Whereas methods to construct carbon stereocentres enantioselectively are well established, routes to synthesize enriched heteroatomic stereocentres have garnered less attention 1 – 5 . Of those atoms commonly present in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-09, Vol.597 (7874), p.70-76
Hauptverfasser: Walsh, Mark P., Phelps, Joseph M., Lennon, Marc E., Yufit, Dmitry S., Kitching, Matthew O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Control of molecular chirality is a fundamental challenge in organic synthesis. Whereas methods to construct carbon stereocentres enantioselectively are well established, routes to synthesize enriched heteroatomic stereocentres have garnered less attention 1 – 5 . Of those atoms commonly present in organic molecules, nitrogen is the most difficult to control stereochemically. Although a limited number of resolution processes have been demonstrated 6 – 8 , no general methodology exists to enantioselectively prepare a nitrogen stereocentre. Here we show that control of the chirality of ammonium cations is easily achieved through a supramolecular recognition process. By combining enantioselective ammonium recognition mediated by 1,1′-bi-2-naphthol scaffolds with conditions that allow the nitrogen stereocentre to racemize, chiral ammonium cations can be produced in excellent yields and selectivities. Mechanistic investigations demonstrate that, through a combination of solution and solid-phase recognition, a thermodynamically driven adductive crystallization process is responsible for the observed selectivity. Distinct from processes based on dynamic and kinetic resolution, which are under kinetic control, this allows for increased selectivity over time by a self-corrective process. The importance of nitrogen stereocentres can be revealed through a stereoselective supramolecular recognition, which is not possible with naturally occurring pseudoenantiomeric Cinchona alkaloids. With practical access to the enantiomeric forms of ammonium cations, this previously ignored stereocentre is now available to be explored. Enantioselective supramolecular recognition allows for the asymmetric synthesis of nitrogen stereocentres, providing chiral ammonium cations in a dynamic crystallization process.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-021-03735-5