A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor

In this paper we address the problem of a posteriori estimation of the error in an engineering quantity of interest which is computed from a finite element solution. As an example we consider the plane elasticity problem with the von Mises stress and the stress intensity factor, as the quantities of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2000-01, Vol.181 (1), p.261-294
Hauptverfasser: Strouboulis, T., Babuŝka, I., Datta, D.K., Copps, K., Gangaraj, S.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue 1
container_start_page 261
container_title Computer methods in applied mechanics and engineering
container_volume 181
creator Strouboulis, T.
Babuŝka, I.
Datta, D.K.
Copps, K.
Gangaraj, S.K.
description In this paper we address the problem of a posteriori estimation of the error in an engineering quantity of interest which is computed from a finite element solution. As an example we consider the plane elasticity problem with the von Mises stress and the stress intensity factor, as the quantities of interest. The estimates of the error in the von Mises stress at a point are obtained by partitioning the error into two components with respect to the element which includes the point, the local and the pollution errors, and by constructing separate estimates for each component. The estimates of the error in the stress intensity factors are constructed by employing an extraction method. We demonstrate that our approach gives accurate estimates for rather coarse meshes and elements of various degrees. In Part II we will address the problem of the adaptive control of the error in the quantity of interest (the goal of the computation), and the construction of goal-adaptive meshes for one or multiple goals.
doi_str_mv 10.1016/S0045-7825(99)00077-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_25685569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599000778</els_id><sourcerecordid>25685569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-48014b97d7712edf359da561318edc7d91c22a7eb69048407686a556f67c6d5d3</originalsourceid><addsrcrecordid>eNqFkd9qFDEUh4MouLY-gpALEb2YmsxM_nkjpbS1UFFQr0OanMHINNnmZBf6bH05M7tLvVG8Cifny3dy-BHyirMTzrh8_42xUXRK9-KtMe8YY0p1-glZca1M1_NBPyWrR-Q5eYH4q0FM835FHk7pOmOFEnOJFLDGW1djTtSlQF1w6xq3QH1OteSZ5onWn0ChlFxoTLvibuNSjfV-acbUTE1yQr-6UunVB_ov_d9M23b_OSIgxdosuPvD0jiUiz3hMmpyvuZyTJ5NbkZ4eTiPyI-L8-9nn7rrL5dXZ6fXnR-kqt2oGR9vjApK8R7CNAgTnJB84BqCV8Fw3_dOwY00bNQjU1JLJ4ScpPIyiDAckTd777rku01bwt5G9DDPLkHeoO2F1I03DRR70JeMWGCy69IWLveWM7tEZXdR2SUHa4zdRWV1e_f6MMChd_NUXPIR_zzuR8H00LCPewzastsIxaKPkDyEWMBXG3L8z6Df-Rqrhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25685569</pqid></control><display><type>article</type><title>A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Strouboulis, T. ; Babuŝka, I. ; Datta, D.K. ; Copps, K. ; Gangaraj, S.K.</creator><creatorcontrib>Strouboulis, T. ; Babuŝka, I. ; Datta, D.K. ; Copps, K. ; Gangaraj, S.K.</creatorcontrib><description>In this paper we address the problem of a posteriori estimation of the error in an engineering quantity of interest which is computed from a finite element solution. As an example we consider the plane elasticity problem with the von Mises stress and the stress intensity factor, as the quantities of interest. The estimates of the error in the von Mises stress at a point are obtained by partitioning the error into two components with respect to the element which includes the point, the local and the pollution errors, and by constructing separate estimates for each component. The estimates of the error in the stress intensity factors are constructed by employing an extraction method. We demonstrate that our approach gives accurate estimates for rather coarse meshes and elements of various degrees. In Part II we will address the problem of the adaptive control of the error in the quantity of interest (the goal of the computation), and the construction of goal-adaptive meshes for one or multiple goals.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00077-8</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical methods in physics ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-01, Vol.181 (1), p.261-294</ispartof><rights>2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-48014b97d7712edf359da561318edc7d91c22a7eb69048407686a556f67c6d5d3</citedby><cites>FETCH-LOGICAL-c367t-48014b97d7712edf359da561318edc7d91c22a7eb69048407686a556f67c6d5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7825(99)00077-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1245083$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Strouboulis, T.</creatorcontrib><creatorcontrib>Babuŝka, I.</creatorcontrib><creatorcontrib>Datta, D.K.</creatorcontrib><creatorcontrib>Copps, K.</creatorcontrib><creatorcontrib>Gangaraj, S.K.</creatorcontrib><title>A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper we address the problem of a posteriori estimation of the error in an engineering quantity of interest which is computed from a finite element solution. As an example we consider the plane elasticity problem with the von Mises stress and the stress intensity factor, as the quantities of interest. The estimates of the error in the von Mises stress at a point are obtained by partitioning the error into two components with respect to the element which includes the point, the local and the pollution errors, and by constructing separate estimates for each component. The estimates of the error in the stress intensity factors are constructed by employing an extraction method. We demonstrate that our approach gives accurate estimates for rather coarse meshes and elements of various degrees. In Part II we will address the problem of the adaptive control of the error in the quantity of interest (the goal of the computation), and the construction of goal-adaptive meshes for one or multiple goals.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkd9qFDEUh4MouLY-gpALEb2YmsxM_nkjpbS1UFFQr0OanMHINNnmZBf6bH05M7tLvVG8Cifny3dy-BHyirMTzrh8_42xUXRK9-KtMe8YY0p1-glZca1M1_NBPyWrR-Q5eYH4q0FM835FHk7pOmOFEnOJFLDGW1djTtSlQF1w6xq3QH1OteSZ5onWn0ChlFxoTLvibuNSjfV-acbUTE1yQr-6UunVB_ov_d9M23b_OSIgxdosuPvD0jiUiz3hMmpyvuZyTJ5NbkZ4eTiPyI-L8-9nn7rrL5dXZ6fXnR-kqt2oGR9vjApK8R7CNAgTnJB84BqCV8Fw3_dOwY00bNQjU1JLJ4ScpPIyiDAckTd777rku01bwt5G9DDPLkHeoO2F1I03DRR70JeMWGCy69IWLveWM7tEZXdR2SUHa4zdRWV1e_f6MMChd_NUXPIR_zzuR8H00LCPewzastsIxaKPkDyEWMBXG3L8z6Df-Rqrhw</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Strouboulis, T.</creator><creator>Babuŝka, I.</creator><creator>Datta, D.K.</creator><creator>Copps, K.</creator><creator>Gangaraj, S.K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000101</creationdate><title>A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor</title><author>Strouboulis, T. ; Babuŝka, I. ; Datta, D.K. ; Copps, K. ; Gangaraj, S.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-48014b97d7712edf359da561318edc7d91c22a7eb69048407686a556f67c6d5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strouboulis, T.</creatorcontrib><creatorcontrib>Babuŝka, I.</creatorcontrib><creatorcontrib>Datta, D.K.</creatorcontrib><creatorcontrib>Copps, K.</creatorcontrib><creatorcontrib>Gangaraj, S.K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strouboulis, T.</au><au>Babuŝka, I.</au><au>Datta, D.K.</au><au>Copps, K.</au><au>Gangaraj, S.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>181</volume><issue>1</issue><spage>261</spage><epage>294</epage><pages>261-294</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>In this paper we address the problem of a posteriori estimation of the error in an engineering quantity of interest which is computed from a finite element solution. As an example we consider the plane elasticity problem with the von Mises stress and the stress intensity factor, as the quantities of interest. The estimates of the error in the von Mises stress at a point are obtained by partitioning the error into two components with respect to the element which includes the point, the local and the pollution errors, and by constructing separate estimates for each component. The estimates of the error in the stress intensity factors are constructed by employing an extraction method. We demonstrate that our approach gives accurate estimates for rather coarse meshes and elements of various degrees. In Part II we will address the problem of the adaptive control of the error in the quantity of interest (the goal of the computation), and the construction of goal-adaptive meshes for one or multiple goals.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00077-8</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2000-01, Vol.181 (1), p.261-294
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_25685569
source Elsevier ScienceDirect Journals Complete
subjects Computational techniques
Exact sciences and technology
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
title A posteriori estimation and adaptive control of the error in the quantity of interest. Part I: A posteriori estimation of the error in the von Mises stress and the stress intensity factor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20posteriori%20estimation%20and%20adaptive%20control%20of%20the%20error%20in%20the%20quantity%20of%20interest.%20Part%20I:%20A%20posteriori%20estimation%20of%20the%20error%20in%20the%20von%20Mises%20stress%20and%20the%20stress%20intensity%20factor&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Strouboulis,%20T.&rft.date=2000-01-01&rft.volume=181&rft.issue=1&rft.spage=261&rft.epage=294&rft.pages=261-294&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00077-8&rft_dat=%3Cproquest_cross%3E25685569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25685569&rft_id=info:pmid/&rft_els_id=S0045782599000778&rfr_iscdi=true