Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy

With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-09, Vol.93 (36), p.12221-12229
Hauptverfasser: Yu, Zehui, Huang, Qikang, Jiang, Xingxing, Lv, Xiaowei, Xiao, Xin, Wang, Mingkui, Shen, Yan, Wittstock, Gunther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12229
container_issue 36
container_start_page 12221
container_title Analytical chemistry (Washington)
container_volume 93
creator Yu, Zehui
Huang, Qikang
Jiang, Xingxing
Lv, Xiaowei
Xiao, Xin
Wang, Mingkui
Shen, Yan
Wittstock, Gunther
description With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.
doi_str_mv 10.1021/acs.analchem.1c01235
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2567981801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567981801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjHzBYYmFJOdtN7bChqnxIIJAKYoyuF5umSuMSu0P_PY5aGBiYrPM97yv7YexCwFCAFNdIYYgtNrSwq6EgEFLlB2wgcgnZ2Bh5yAYAoDKpAY7ZSQhLACFAjAesnjpnKXLvOPKJJ4zYbEOa2zS_Lnz02PrK8rrlHxhtx2frpo6xbj9v-C2fxU217bMzwrZNl3zapLbO9y-pCRv-XFPnA_n19owdOWyCPd-fp-z9bvo2ecieXu4fJ7dPGapcxSwnq3RFZmTREUmQkhRpN5LOzBG1RUiLwhpRaDN2huaFQ1tUVrmqmidGnbKrXe-6818bG2K5qgPZpsHW-k0oZT7WhREGREIv_6BLv-mSyJ7SKhe5FjpRox3V_yR01pXrrl5hty0FlL3_Mvkvf_yXe_8pBrtYv_3t_TfyDapgjjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573515717</pqid></control><display><type>article</type><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><source>ACS Publications</source><creator>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</creator><creatorcontrib>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</creatorcontrib><description>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c01235</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Bismuth oxides ; Carrier recombination ; Catalysts ; Charge transfer ; Chemical evolution ; Chemistry ; Current carriers ; Electrochemistry ; Electromagnetic absorption ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Microscopy ; Nickel compounds ; Photoanodes ; Photocatalysts ; Rate constants ; Recombination ; Scanning ; Scheelite ; Splitting ; Valence band ; Vanadate ; Vanadates ; Water splitting</subject><ispartof>Analytical chemistry (Washington), 2021-09, Vol.93 (36), p.12221-12229</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 14, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</citedby><cites>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</cites><orcidid>0000-0002-8045-6926 ; 0000-0002-4516-2500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c01235$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c01235$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Yu, Zehui</creatorcontrib><creatorcontrib>Huang, Qikang</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Wang, Mingkui</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</description><subject>Bismuth oxides</subject><subject>Carrier recombination</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Chemistry</subject><subject>Current carriers</subject><subject>Electrochemistry</subject><subject>Electromagnetic absorption</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Microscopy</subject><subject>Nickel compounds</subject><subject>Photoanodes</subject><subject>Photocatalysts</subject><subject>Rate constants</subject><subject>Recombination</subject><subject>Scanning</subject><subject>Scheelite</subject><subject>Splitting</subject><subject>Valence band</subject><subject>Vanadate</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjHzBYYmFJOdtN7bChqnxIIJAKYoyuF5umSuMSu0P_PY5aGBiYrPM97yv7YexCwFCAFNdIYYgtNrSwq6EgEFLlB2wgcgnZ2Bh5yAYAoDKpAY7ZSQhLACFAjAesnjpnKXLvOPKJJ4zYbEOa2zS_Lnz02PrK8rrlHxhtx2frpo6xbj9v-C2fxU217bMzwrZNl3zapLbO9y-pCRv-XFPnA_n19owdOWyCPd-fp-z9bvo2ecieXu4fJ7dPGapcxSwnq3RFZmTREUmQkhRpN5LOzBG1RUiLwhpRaDN2huaFQ1tUVrmqmidGnbKrXe-6818bG2K5qgPZpsHW-k0oZT7WhREGREIv_6BLv-mSyJ7SKhe5FjpRox3V_yR01pXrrl5hty0FlL3_Mvkvf_yXe_8pBrtYv_3t_TfyDapgjjw</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Yu, Zehui</creator><creator>Huang, Qikang</creator><creator>Jiang, Xingxing</creator><creator>Lv, Xiaowei</creator><creator>Xiao, Xin</creator><creator>Wang, Mingkui</creator><creator>Shen, Yan</creator><creator>Wittstock, Gunther</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8045-6926</orcidid><orcidid>https://orcid.org/0000-0002-4516-2500</orcidid></search><sort><creationdate>20210914</creationdate><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><author>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxides</topic><topic>Carrier recombination</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Chemistry</topic><topic>Current carriers</topic><topic>Electrochemistry</topic><topic>Electromagnetic absorption</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Microscopy</topic><topic>Nickel compounds</topic><topic>Photoanodes</topic><topic>Photocatalysts</topic><topic>Rate constants</topic><topic>Recombination</topic><topic>Scanning</topic><topic>Scheelite</topic><topic>Splitting</topic><topic>Valence band</topic><topic>Vanadate</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zehui</creatorcontrib><creatorcontrib>Huang, Qikang</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Wang, Mingkui</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zehui</au><au>Huang, Qikang</au><au>Jiang, Xingxing</au><au>Lv, Xiaowei</au><au>Xiao, Xin</au><au>Wang, Mingkui</au><au>Shen, Yan</au><au>Wittstock, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>93</volume><issue>36</issue><spage>12221</spage><epage>12229</epage><pages>12221-12229</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.1c01235</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8045-6926</orcidid><orcidid>https://orcid.org/0000-0002-4516-2500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-09, Vol.93 (36), p.12221-12229
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2567981801
source ACS Publications
subjects Bismuth oxides
Carrier recombination
Catalysts
Charge transfer
Chemical evolution
Chemistry
Current carriers
Electrochemistry
Electromagnetic absorption
Hydroxides
Intermetallic compounds
Iron compounds
Microscopy
Nickel compounds
Photoanodes
Photocatalysts
Rate constants
Recombination
Scanning
Scheelite
Splitting
Valence band
Vanadate
Vanadates
Water splitting
title Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20Cocatalyst%20on%20a%20Photoanode%20in%20Water%20Splitting:%20A%20Study%20of%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yu,%20Zehui&rft.date=2021-09-14&rft.volume=93&rft.issue=36&rft.spage=12221&rft.epage=12229&rft.pages=12221-12229&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c01235&rft_dat=%3Cproquest_cross%3E2567981801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573515717&rft_id=info:pmid/&rfr_iscdi=true