Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy
With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting....
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-09, Vol.93 (36), p.12221-12229 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12229 |
---|---|
container_issue | 36 |
container_start_page | 12221 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Yu, Zehui Huang, Qikang Jiang, Xingxing Lv, Xiaowei Xiao, Xin Wang, Mingkui Shen, Yan Wittstock, Gunther |
description | With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system. |
doi_str_mv | 10.1021/acs.analchem.1c01235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2567981801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2567981801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjHzBYYmFJOdtN7bChqnxIIJAKYoyuF5umSuMSu0P_PY5aGBiYrPM97yv7YexCwFCAFNdIYYgtNrSwq6EgEFLlB2wgcgnZ2Bh5yAYAoDKpAY7ZSQhLACFAjAesnjpnKXLvOPKJJ4zYbEOa2zS_Lnz02PrK8rrlHxhtx2frpo6xbj9v-C2fxU217bMzwrZNl3zapLbO9y-pCRv-XFPnA_n19owdOWyCPd-fp-z9bvo2ecieXu4fJ7dPGapcxSwnq3RFZmTREUmQkhRpN5LOzBG1RUiLwhpRaDN2huaFQ1tUVrmqmidGnbKrXe-6818bG2K5qgPZpsHW-k0oZT7WhREGREIv_6BLv-mSyJ7SKhe5FjpRox3V_yR01pXrrl5hty0FlL3_Mvkvf_yXe_8pBrtYv_3t_TfyDapgjjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573515717</pqid></control><display><type>article</type><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><source>ACS Publications</source><creator>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</creator><creatorcontrib>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</creatorcontrib><description>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c01235</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Bismuth oxides ; Carrier recombination ; Catalysts ; Charge transfer ; Chemical evolution ; Chemistry ; Current carriers ; Electrochemistry ; Electromagnetic absorption ; Hydroxides ; Intermetallic compounds ; Iron compounds ; Microscopy ; Nickel compounds ; Photoanodes ; Photocatalysts ; Rate constants ; Recombination ; Scanning ; Scheelite ; Splitting ; Valence band ; Vanadate ; Vanadates ; Water splitting</subject><ispartof>Analytical chemistry (Washington), 2021-09, Vol.93 (36), p.12221-12229</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 14, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</citedby><cites>FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</cites><orcidid>0000-0002-8045-6926 ; 0000-0002-4516-2500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c01235$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c01235$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids></links><search><creatorcontrib>Yu, Zehui</creatorcontrib><creatorcontrib>Huang, Qikang</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Wang, Mingkui</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</description><subject>Bismuth oxides</subject><subject>Carrier recombination</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical evolution</subject><subject>Chemistry</subject><subject>Current carriers</subject><subject>Electrochemistry</subject><subject>Electromagnetic absorption</subject><subject>Hydroxides</subject><subject>Intermetallic compounds</subject><subject>Iron compounds</subject><subject>Microscopy</subject><subject>Nickel compounds</subject><subject>Photoanodes</subject><subject>Photocatalysts</subject><subject>Rate constants</subject><subject>Recombination</subject><subject>Scanning</subject><subject>Scheelite</subject><subject>Splitting</subject><subject>Valence band</subject><subject>Vanadate</subject><subject>Vanadates</subject><subject>Water splitting</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjHzBYYmFJOdtN7bChqnxIIJAKYoyuF5umSuMSu0P_PY5aGBiYrPM97yv7YexCwFCAFNdIYYgtNrSwq6EgEFLlB2wgcgnZ2Bh5yAYAoDKpAY7ZSQhLACFAjAesnjpnKXLvOPKJJ4zYbEOa2zS_Lnz02PrK8rrlHxhtx2frpo6xbj9v-C2fxU217bMzwrZNl3zapLbO9y-pCRv-XFPnA_n19owdOWyCPd-fp-z9bvo2ecieXu4fJ7dPGapcxSwnq3RFZmTREUmQkhRpN5LOzBG1RUiLwhpRaDN2huaFQ1tUVrmqmidGnbKrXe-6818bG2K5qgPZpsHW-k0oZT7WhREGREIv_6BLv-mSyJ7SKhe5FjpRox3V_yR01pXrrl5hty0FlL3_Mvkvf_yXe_8pBrtYv_3t_TfyDapgjjw</recordid><startdate>20210914</startdate><enddate>20210914</enddate><creator>Yu, Zehui</creator><creator>Huang, Qikang</creator><creator>Jiang, Xingxing</creator><creator>Lv, Xiaowei</creator><creator>Xiao, Xin</creator><creator>Wang, Mingkui</creator><creator>Shen, Yan</creator><creator>Wittstock, Gunther</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8045-6926</orcidid><orcidid>https://orcid.org/0000-0002-4516-2500</orcidid></search><sort><creationdate>20210914</creationdate><title>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</title><author>Yu, Zehui ; Huang, Qikang ; Jiang, Xingxing ; Lv, Xiaowei ; Xiao, Xin ; Wang, Mingkui ; Shen, Yan ; Wittstock, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-5ce37dc84eafcc2022c3c7f42f8baa7ea0eaf9e819786f8cb9fae9de3fddbf8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bismuth oxides</topic><topic>Carrier recombination</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical evolution</topic><topic>Chemistry</topic><topic>Current carriers</topic><topic>Electrochemistry</topic><topic>Electromagnetic absorption</topic><topic>Hydroxides</topic><topic>Intermetallic compounds</topic><topic>Iron compounds</topic><topic>Microscopy</topic><topic>Nickel compounds</topic><topic>Photoanodes</topic><topic>Photocatalysts</topic><topic>Rate constants</topic><topic>Recombination</topic><topic>Scanning</topic><topic>Scheelite</topic><topic>Splitting</topic><topic>Valence band</topic><topic>Vanadate</topic><topic>Vanadates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Zehui</creatorcontrib><creatorcontrib>Huang, Qikang</creatorcontrib><creatorcontrib>Jiang, Xingxing</creatorcontrib><creatorcontrib>Lv, Xiaowei</creatorcontrib><creatorcontrib>Xiao, Xin</creatorcontrib><creatorcontrib>Wang, Mingkui</creatorcontrib><creatorcontrib>Shen, Yan</creatorcontrib><creatorcontrib>Wittstock, Gunther</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Zehui</au><au>Huang, Qikang</au><au>Jiang, Xingxing</au><au>Lv, Xiaowei</au><au>Xiao, Xin</au><au>Wang, Mingkui</au><au>Shen, Yan</au><au>Wittstock, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-09-14</date><risdate>2021</risdate><volume>93</volume><issue>36</issue><spage>12221</spage><epage>12229</epage><pages>12221-12229</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>With a proper band gap of ∼2.4 eV for solar light absorption and suitable valence band edge position for oxygen evolution, scheelite-monoclinic bismuth vanadate (BiVO4) has become one of the most attractive photocatalysts for efficient visible-light-driven photoelectrochemical (PEC) water splitting. Several studies have indicated that surface modification of BiVO4 with a cocatalyst such as NiFe layered double hydroxide (LDH) can significantly increase the PEC water splitting performance of the catalyst. Herein, we experimentally investigated the charge transfer dynamics and charge carrier recombination processes by scanning electrochemical microscopy (SECM) with the feedback mode on the surface of BiVO4 and BiVO4/NiFe-LDH as model samples. The ratio of rate constants for photogenerated hole (k h+ 0) to electron (k e– 0) via the photocatalyst of BiVO4/NiFe-LDH reacting with the redox couple is found to be five times larger than that of BiVO4 under illumination. In this case, the ratio of the rate constants k h+ 0/k e– 0 stands for the interfacial charge recombination process. This implies the cocatalyst NiFe-LDH suppresses the electron back transfer greatly and finally reduces the surface recombination. Control experiments with cocatalysts CoPi and RuO x onto BiVO4 further verify this conclusion. Therefore, the SECM characterization allows us to make an overall analysis on the function of cocatalysts in the PEC water splitting system.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.1c01235</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8045-6926</orcidid><orcidid>https://orcid.org/0000-0002-4516-2500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-09, Vol.93 (36), p.12221-12229 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2567981801 |
source | ACS Publications |
subjects | Bismuth oxides Carrier recombination Catalysts Charge transfer Chemical evolution Chemistry Current carriers Electrochemistry Electromagnetic absorption Hydroxides Intermetallic compounds Iron compounds Microscopy Nickel compounds Photoanodes Photocatalysts Rate constants Recombination Scanning Scheelite Splitting Valence band Vanadate Vanadates Water splitting |
title | Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A02%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20a%20Cocatalyst%20on%20a%20Photoanode%20in%20Water%20Splitting:%20A%20Study%20of%20Scanning%20Electrochemical%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yu,%20Zehui&rft.date=2021-09-14&rft.volume=93&rft.issue=36&rft.spage=12221&rft.epage=12229&rft.pages=12221-12229&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c01235&rft_dat=%3Cproquest_cross%3E2567981801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573515717&rft_id=info:pmid/&rfr_iscdi=true |