Gauge-Field Extended k · p Method and Novel Topological Phases
Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-08, Vol.127 (7), p.1-076401, Article 076401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 076401 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Physical review letters |
container_volume | 127 |
creator | Shao, L. B. Liu, Q. Xiao, R. Yang, Shengyuan A. Zhao, Y. X. |
description | Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases. |
doi_str_mv | 10.1103/PhysRevLett.127.076401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566258062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566258062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</originalsourceid><addsrcrecordid>eNpdkEFLwzAYhoMoOKd_QQJevHR-SdqkOYkMN4WpQ-Y5pOnXrbNbatMO98u8-8vcmAfx9F4eHl4eQi4ZDBgDcTNdbMMrbibYtgPG1QCUjIEdkR4DpSPFWHxMegCCRRpAnZKzEJYAwLhMe-R2bLs5RqMSq5zef7a4zjGn7_T7i9b0CduFz6ld5_TZb7CiM1_7ys9LZys6XdiA4ZycFLYKePG7ffI2up8NH6LJy_hxeDeJnJC6jXIeF6gcpFwmWOjYJinGwJ2wTnFwOnNZYrUTWZy6vNAJK2LrQCWaM6GyQos-uT5468Z_dBhasyqDw6qya_RdMDyRkicpSL5Dr_6hS9816927PZVwAC32QnmgXONDaLAwdVOubLM1DMy-q_nT1ey6mkNX8QNlB22P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565200939</pqid></control><display><type>article</type><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><source>EZB-FREE-00999 freely available EZB journals</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</creator><creatorcontrib>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</creatorcontrib><description>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.076401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algebra ; Cold atoms ; Crystal lattices ; Electronic systems ; Fields (mathematics) ; Group theory ; Interlayers ; Optical lattices ; Phases ; Photonic crystals ; Topology ; Translations</subject><ispartof>Physical review letters, 2021-08, Vol.127 (7), p.1-076401, Article 076401</ispartof><rights>Copyright American Physical Society Aug 13, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</citedby><cites>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</cites><orcidid>0000-0001-6003-1501 ; 0000-0003-2464-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Shao, L. B.</creatorcontrib><creatorcontrib>Liu, Q.</creatorcontrib><creatorcontrib>Xiao, R.</creatorcontrib><creatorcontrib>Yang, Shengyuan A.</creatorcontrib><creatorcontrib>Zhao, Y. X.</creatorcontrib><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><title>Physical review letters</title><description>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</description><subject>Algebra</subject><subject>Cold atoms</subject><subject>Crystal lattices</subject><subject>Electronic systems</subject><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Interlayers</subject><subject>Optical lattices</subject><subject>Phases</subject><subject>Photonic crystals</subject><subject>Topology</subject><subject>Translations</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAYhoMoOKd_QQJevHR-SdqkOYkMN4WpQ-Y5pOnXrbNbatMO98u8-8vcmAfx9F4eHl4eQi4ZDBgDcTNdbMMrbibYtgPG1QCUjIEdkR4DpSPFWHxMegCCRRpAnZKzEJYAwLhMe-R2bLs5RqMSq5zef7a4zjGn7_T7i9b0CduFz6ld5_TZb7CiM1_7ys9LZys6XdiA4ZycFLYKePG7ffI2up8NH6LJy_hxeDeJnJC6jXIeF6gcpFwmWOjYJinGwJ2wTnFwOnNZYrUTWZy6vNAJK2LrQCWaM6GyQos-uT5468Z_dBhasyqDw6qya_RdMDyRkicpSL5Dr_6hS9816927PZVwAC32QnmgXONDaLAwdVOubLM1DMy-q_nT1ey6mkNX8QNlB22P</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Shao, L. B.</creator><creator>Liu, Q.</creator><creator>Xiao, R.</creator><creator>Yang, Shengyuan A.</creator><creator>Zhao, Y. X.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6003-1501</orcidid><orcidid>https://orcid.org/0000-0003-2464-3927</orcidid></search><sort><creationdate>20210813</creationdate><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><author>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Cold atoms</topic><topic>Crystal lattices</topic><topic>Electronic systems</topic><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Interlayers</topic><topic>Optical lattices</topic><topic>Phases</topic><topic>Photonic crystals</topic><topic>Topology</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, L. B.</creatorcontrib><creatorcontrib>Liu, Q.</creatorcontrib><creatorcontrib>Xiao, R.</creatorcontrib><creatorcontrib>Yang, Shengyuan A.</creatorcontrib><creatorcontrib>Zhao, Y. X.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, L. B.</au><au>Liu, Q.</au><au>Xiao, R.</au><au>Yang, Shengyuan A.</au><au>Zhao, Y. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauge-Field Extended k · p Method and Novel Topological Phases</atitle><jtitle>Physical review letters</jtitle><date>2021-08-13</date><risdate>2021</risdate><volume>127</volume><issue>7</issue><spage>1</spage><epage>076401</epage><pages>1-076401</pages><artnum>076401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.076401</doi><orcidid>https://orcid.org/0000-0001-6003-1501</orcidid><orcidid>https://orcid.org/0000-0003-2464-3927</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-08, Vol.127 (7), p.1-076401, Article 076401 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2566258062 |
source | EZB-FREE-00999 freely available EZB journals; APS: American Physical Society E-Journals (Physics) |
subjects | Algebra Cold atoms Crystal lattices Electronic systems Fields (mathematics) Group theory Interlayers Optical lattices Phases Photonic crystals Topology Translations |
title | Gauge-Field Extended k · p Method and Novel Topological Phases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauge-Field%20Extended%20k%20%C2%B7%20p%20Method%20and%20Novel%20Topological%20Phases&rft.jtitle=Physical%20review%20letters&rft.au=Shao,%20L.%20B.&rft.date=2021-08-13&rft.volume=127&rft.issue=7&rft.spage=1&rft.epage=076401&rft.pages=1-076401&rft.artnum=076401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.076401&rft_dat=%3Cproquest_cross%3E2566258062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565200939&rft_id=info:pmid/&rfr_iscdi=true |