Gauge-Field Extended k · p Method and Novel Topological Phases

Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-08, Vol.127 (7), p.1-076401, Article 076401
Hauptverfasser: Shao, L. B., Liu, Q., Xiao, R., Yang, Shengyuan A., Zhao, Y. X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 076401
container_issue 7
container_start_page 1
container_title Physical review letters
container_volume 127
creator Shao, L. B.
Liu, Q.
Xiao, R.
Yang, Shengyuan A.
Zhao, Y. X.
description Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.
doi_str_mv 10.1103/PhysRevLett.127.076401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566258062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2566258062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</originalsourceid><addsrcrecordid>eNpdkEFLwzAYhoMoOKd_QQJevHR-SdqkOYkMN4WpQ-Y5pOnXrbNbatMO98u8-8vcmAfx9F4eHl4eQi4ZDBgDcTNdbMMrbibYtgPG1QCUjIEdkR4DpSPFWHxMegCCRRpAnZKzEJYAwLhMe-R2bLs5RqMSq5zef7a4zjGn7_T7i9b0CduFz6ld5_TZb7CiM1_7ys9LZys6XdiA4ZycFLYKePG7ffI2up8NH6LJy_hxeDeJnJC6jXIeF6gcpFwmWOjYJinGwJ2wTnFwOnNZYrUTWZy6vNAJK2LrQCWaM6GyQos-uT5468Z_dBhasyqDw6qya_RdMDyRkicpSL5Dr_6hS9816927PZVwAC32QnmgXONDaLAwdVOubLM1DMy-q_nT1ey6mkNX8QNlB22P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565200939</pqid></control><display><type>article</type><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><source>EZB-FREE-00999 freely available EZB journals</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</creator><creatorcontrib>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</creatorcontrib><description>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.076401</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Algebra ; Cold atoms ; Crystal lattices ; Electronic systems ; Fields (mathematics) ; Group theory ; Interlayers ; Optical lattices ; Phases ; Photonic crystals ; Topology ; Translations</subject><ispartof>Physical review letters, 2021-08, Vol.127 (7), p.1-076401, Article 076401</ispartof><rights>Copyright American Physical Society Aug 13, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</citedby><cites>FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</cites><orcidid>0000-0001-6003-1501 ; 0000-0003-2464-3927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Shao, L. B.</creatorcontrib><creatorcontrib>Liu, Q.</creatorcontrib><creatorcontrib>Xiao, R.</creatorcontrib><creatorcontrib>Yang, Shengyuan A.</creatorcontrib><creatorcontrib>Zhao, Y. X.</creatorcontrib><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><title>Physical review letters</title><description>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</description><subject>Algebra</subject><subject>Cold atoms</subject><subject>Crystal lattices</subject><subject>Electronic systems</subject><subject>Fields (mathematics)</subject><subject>Group theory</subject><subject>Interlayers</subject><subject>Optical lattices</subject><subject>Phases</subject><subject>Photonic crystals</subject><subject>Topology</subject><subject>Translations</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLwzAYhoMoOKd_QQJevHR-SdqkOYkMN4WpQ-Y5pOnXrbNbatMO98u8-8vcmAfx9F4eHl4eQi4ZDBgDcTNdbMMrbibYtgPG1QCUjIEdkR4DpSPFWHxMegCCRRpAnZKzEJYAwLhMe-R2bLs5RqMSq5zef7a4zjGn7_T7i9b0CduFz6ld5_TZb7CiM1_7ys9LZys6XdiA4ZycFLYKePG7ffI2up8NH6LJy_hxeDeJnJC6jXIeF6gcpFwmWOjYJinGwJ2wTnFwOnNZYrUTWZy6vNAJK2LrQCWaM6GyQos-uT5468Z_dBhasyqDw6qya_RdMDyRkicpSL5Dr_6hS9816927PZVwAC32QnmgXONDaLAwdVOubLM1DMy-q_nT1ey6mkNX8QNlB22P</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Shao, L. B.</creator><creator>Liu, Q.</creator><creator>Xiao, R.</creator><creator>Yang, Shengyuan A.</creator><creator>Zhao, Y. X.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6003-1501</orcidid><orcidid>https://orcid.org/0000-0003-2464-3927</orcidid></search><sort><creationdate>20210813</creationdate><title>Gauge-Field Extended k · p Method and Novel Topological Phases</title><author>Shao, L. B. ; Liu, Q. ; Xiao, R. ; Yang, Shengyuan A. ; Zhao, Y. X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-d24fe7c08265ef94a58e402c3ac720c9bcb5a9c3b48cdf951f4ac07592137bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Cold atoms</topic><topic>Crystal lattices</topic><topic>Electronic systems</topic><topic>Fields (mathematics)</topic><topic>Group theory</topic><topic>Interlayers</topic><topic>Optical lattices</topic><topic>Phases</topic><topic>Photonic crystals</topic><topic>Topology</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, L. B.</creatorcontrib><creatorcontrib>Liu, Q.</creatorcontrib><creatorcontrib>Xiao, R.</creatorcontrib><creatorcontrib>Yang, Shengyuan A.</creatorcontrib><creatorcontrib>Zhao, Y. X.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, L. B.</au><au>Liu, Q.</au><au>Xiao, R.</au><au>Yang, Shengyuan A.</au><au>Zhao, Y. X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gauge-Field Extended k · p Method and Novel Topological Phases</atitle><jtitle>Physical review letters</jtitle><date>2021-08-13</date><risdate>2021</risdate><volume>127</volume><issue>7</issue><spage>1</spage><epage>076401</epage><pages>1-076401</pages><artnum>076401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Although topological artificial systems, like acoustic and photonic crystals and cold atoms in optical lattices were initially motivated by simulating topological phases of electronic systems, they have their own unique features such as the spinless time-reversal symmetry and tunable Z2 gauge fields. Hence, it is fundamentally important to explore new topological phases based on these features. Here, we point out that the Z2 gauge field leads to two fundamental modifications of the conventional k ⋅ p method: (i) The little co-group must include the translations with nontrivial algebraic relations. (ii) The algebraic relations of the little co-group are projectively represented. These give rise to higher-dimensional irreducible representations and therefore highly degenerate Fermi points. Breaking the primitive translations can transform the Fermi points to interesting topological phases. We demonstrate our theory by two models: a rectangular π -flux model exhibiting graphenelike semimetal phases, and a graphite model with interlayer π flux that realizes the real second-order nodal-line semimetal phase with hinge helical modes. Their physical realizations with a general bright-dark mechanism are discussed. Our finding opens a new direction to explore novel topological phases unique to crystalline systems with gauge fields and establishes the approach to analyze these phases.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.127.076401</doi><orcidid>https://orcid.org/0000-0001-6003-1501</orcidid><orcidid>https://orcid.org/0000-0003-2464-3927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2021-08, Vol.127 (7), p.1-076401, Article 076401
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2566258062
source EZB-FREE-00999 freely available EZB journals; APS: American Physical Society E-Journals (Physics)
subjects Algebra
Cold atoms
Crystal lattices
Electronic systems
Fields (mathematics)
Group theory
Interlayers
Optical lattices
Phases
Photonic crystals
Topology
Translations
title Gauge-Field Extended k · p Method and Novel Topological Phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gauge-Field%20Extended%20k%20%C2%B7%20p%20Method%20and%20Novel%20Topological%20Phases&rft.jtitle=Physical%20review%20letters&rft.au=Shao,%20L.%20B.&rft.date=2021-08-13&rft.volume=127&rft.issue=7&rft.spage=1&rft.epage=076401&rft.pages=1-076401&rft.artnum=076401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.076401&rft_dat=%3Cproquest_cross%3E2566258062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2565200939&rft_id=info:pmid/&rfr_iscdi=true