Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2021-10, Vol.81 (19), p.4059-4075.e11 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4075.e11 |
---|---|
container_issue | 19 |
container_start_page | 4059 |
container_title | Molecular cell |
container_volume | 81 |
creator | Gong, Chun Krupka, Joanna A. Gao, Jie Grigoropoulos, Nicholas F. Giotopoulos, George Asby, Ryan Screen, Michael Usheva, Zelvera Cucco, Francesco Barrans, Sharon Painter, Daniel Zaini, Nurmahirah Binte Mohammed Haupl, Björn Bornelöv, Susanne Ruiz De Los Mozos, Igor Meng, Wei Zhou, Peixun Blain, Alex E. Forde, Sorcha Matthews, Jamie Khim Tan, Michelle Guet Burke, G.A. Amos Sze, Siu Kwan Beer, Philip Burton, Cathy Campbell, Peter Rand, Vikki Turner, Suzanne D. Ule, Jernej Roman, Eve Tooze, Reuben Oellerich, Thomas Huntly, Brian J. Turner, Martin Du, Ming-Qing Samarajiwa, Shamith A. Hodson, Daniel J. |
description | DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
[Display omitted]
•Loss-of-function mutations of DDX3X are frequent in MYC-driven B cell lymphomas•DDX3X promotes translation of mRNAs encoding the core protein synthesis machinery•Loss of DDX3X buffers MYC-driven global protein synthesis and proteotoxic stress•DDX3X loss is later rescued by ectopic expression of Y-chromosome-encoded DDX3Y
Gong et al. show that during the early stages of lymphoma development, loss-of-function mutations in the RNA helicase DDX3X allow human B cells to tolerate the forced expression of MYC. In contrast, established tumors restore DDX3 helicase activity by ectopic expression of the Y-chromosome-encoded homolog DDX3Y. |
doi_str_mv | 10.1016/j.molcel.2021.07.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2566045703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276521006250</els_id><sourcerecordid>2566045703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-56044112871862991c66c119bba1fe4beaba6d0957277c6a93a61b468f048bce3</originalsourceid><addsrcrecordid>eNp9kEtP6zAQhS0E4v0P0JWXbBI8iWMnmyuhcnlIPCQeEqwsx5lQV07Sa6eV-u8xtLBkNSPNOXN0PkJOgKXAQJzN0m5wBl2asQxSJlPGYYvsA6tkwkHw7c2eSVHskYMQZowBL8pql-zlnOeyzOU-cU_4f4H9aLWjtl-iD0ibVfD4vnB6tENPh5aOU6SP9-d0is4aHTDQi4vX_JXqvvna3mirjXV21GO83b1NksbbJfbUrbr5dOj0O_YYbDgiO612AY8385C8XP57nlwntw9XN5Pz28RwVo5JIRjnAFkpoRRZVYERwgBUda2hRV6jrrVoWFXITEojdJVrATUXZct4WRvMD8np-u_cD7FdGFVnQ0TldI_DIqisEDGikCyPUr6WGj-EWLtVc2877VcKmPrkrGZqzVl9clZMqsg52v5sEhZ1h82P6RtsFPxdCzD2XFr0KhiLvcHGejSjagb7e8IHJxOQFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2566045703</pqid></control><display><type>article</type><title>Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Gong, Chun ; Krupka, Joanna A. ; Gao, Jie ; Grigoropoulos, Nicholas F. ; Giotopoulos, George ; Asby, Ryan ; Screen, Michael ; Usheva, Zelvera ; Cucco, Francesco ; Barrans, Sharon ; Painter, Daniel ; Zaini, Nurmahirah Binte Mohammed ; Haupl, Björn ; Bornelöv, Susanne ; Ruiz De Los Mozos, Igor ; Meng, Wei ; Zhou, Peixun ; Blain, Alex E. ; Forde, Sorcha ; Matthews, Jamie ; Khim Tan, Michelle Guet ; Burke, G.A. Amos ; Sze, Siu Kwan ; Beer, Philip ; Burton, Cathy ; Campbell, Peter ; Rand, Vikki ; Turner, Suzanne D. ; Ule, Jernej ; Roman, Eve ; Tooze, Reuben ; Oellerich, Thomas ; Huntly, Brian J. ; Turner, Martin ; Du, Ming-Qing ; Samarajiwa, Shamith A. ; Hodson, Daniel J.</creator><creatorcontrib>Gong, Chun ; Krupka, Joanna A. ; Gao, Jie ; Grigoropoulos, Nicholas F. ; Giotopoulos, George ; Asby, Ryan ; Screen, Michael ; Usheva, Zelvera ; Cucco, Francesco ; Barrans, Sharon ; Painter, Daniel ; Zaini, Nurmahirah Binte Mohammed ; Haupl, Björn ; Bornelöv, Susanne ; Ruiz De Los Mozos, Igor ; Meng, Wei ; Zhou, Peixun ; Blain, Alex E. ; Forde, Sorcha ; Matthews, Jamie ; Khim Tan, Michelle Guet ; Burke, G.A. Amos ; Sze, Siu Kwan ; Beer, Philip ; Burton, Cathy ; Campbell, Peter ; Rand, Vikki ; Turner, Suzanne D. ; Ule, Jernej ; Roman, Eve ; Tooze, Reuben ; Oellerich, Thomas ; Huntly, Brian J. ; Turner, Martin ; Du, Ming-Qing ; Samarajiwa, Shamith A. ; Hodson, Daniel J.</creatorcontrib><description>DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
[Display omitted]
•Loss-of-function mutations of DDX3X are frequent in MYC-driven B cell lymphomas•DDX3X promotes translation of mRNAs encoding the core protein synthesis machinery•Loss of DDX3X buffers MYC-driven global protein synthesis and proteotoxic stress•DDX3X loss is later rescued by ectopic expression of Y-chromosome-encoded DDX3Y
Gong et al. show that during the early stages of lymphoma development, loss-of-function mutations in the RNA helicase DDX3X allow human B cells to tolerate the forced expression of MYC. In contrast, established tumors restore DDX3 helicase activity by ectopic expression of the Y-chromosome-encoded homolog DDX3Y.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.07.041</identifier><identifier>PMID: 34437837</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Animals ; B-Lymphocytes - enzymology ; B-Lymphocytes - pathology ; Burkitt lymphoma ; Cell Line, Tumor ; Child ; Child, Preschool ; DDX3X ; DEAD-box RNA Helicases - genetics ; DEAD-box RNA Helicases - metabolism ; Endoplasmic Reticulum Stress ; Female ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Neoplastic ; germinal center ; Humans ; Loss of Function Mutation ; Lymphoma, B-Cell - enzymology ; Lymphoma, B-Cell - genetics ; Lymphoma, B-Cell - pathology ; Male ; Mice, Transgenic ; Middle Aged ; Minor Histocompatibility Antigens - genetics ; Minor Histocompatibility Antigens - metabolism ; MYC ; Neoplasm Proteins - biosynthesis ; Neoplasm Proteins - genetics ; Protein Biosynthesis ; Proteome ; Proteostasis ; proteotoxic stress ; Proto-Oncogene Proteins c-myc - genetics ; Proto-Oncogene Proteins c-myc - metabolism ; RNA helicase ; translation ; Young Adult</subject><ispartof>Molecular cell, 2021-10, Vol.81 (19), p.4059-4075.e11</ispartof><rights>2021 The Author(s)</rights><rights>Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-56044112871862991c66c119bba1fe4beaba6d0957277c6a93a61b468f048bce3</citedby><cites>FETCH-LOGICAL-c408t-56044112871862991c66c119bba1fe4beaba6d0957277c6a93a61b468f048bce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276521006250$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34437837$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Chun</creatorcontrib><creatorcontrib>Krupka, Joanna A.</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Grigoropoulos, Nicholas F.</creatorcontrib><creatorcontrib>Giotopoulos, George</creatorcontrib><creatorcontrib>Asby, Ryan</creatorcontrib><creatorcontrib>Screen, Michael</creatorcontrib><creatorcontrib>Usheva, Zelvera</creatorcontrib><creatorcontrib>Cucco, Francesco</creatorcontrib><creatorcontrib>Barrans, Sharon</creatorcontrib><creatorcontrib>Painter, Daniel</creatorcontrib><creatorcontrib>Zaini, Nurmahirah Binte Mohammed</creatorcontrib><creatorcontrib>Haupl, Björn</creatorcontrib><creatorcontrib>Bornelöv, Susanne</creatorcontrib><creatorcontrib>Ruiz De Los Mozos, Igor</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Peixun</creatorcontrib><creatorcontrib>Blain, Alex E.</creatorcontrib><creatorcontrib>Forde, Sorcha</creatorcontrib><creatorcontrib>Matthews, Jamie</creatorcontrib><creatorcontrib>Khim Tan, Michelle Guet</creatorcontrib><creatorcontrib>Burke, G.A. Amos</creatorcontrib><creatorcontrib>Sze, Siu Kwan</creatorcontrib><creatorcontrib>Beer, Philip</creatorcontrib><creatorcontrib>Burton, Cathy</creatorcontrib><creatorcontrib>Campbell, Peter</creatorcontrib><creatorcontrib>Rand, Vikki</creatorcontrib><creatorcontrib>Turner, Suzanne D.</creatorcontrib><creatorcontrib>Ule, Jernej</creatorcontrib><creatorcontrib>Roman, Eve</creatorcontrib><creatorcontrib>Tooze, Reuben</creatorcontrib><creatorcontrib>Oellerich, Thomas</creatorcontrib><creatorcontrib>Huntly, Brian J.</creatorcontrib><creatorcontrib>Turner, Martin</creatorcontrib><creatorcontrib>Du, Ming-Qing</creatorcontrib><creatorcontrib>Samarajiwa, Shamith A.</creatorcontrib><creatorcontrib>Hodson, Daniel J.</creatorcontrib><title>Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
[Display omitted]
•Loss-of-function mutations of DDX3X are frequent in MYC-driven B cell lymphomas•DDX3X promotes translation of mRNAs encoding the core protein synthesis machinery•Loss of DDX3X buffers MYC-driven global protein synthesis and proteotoxic stress•DDX3X loss is later rescued by ectopic expression of Y-chromosome-encoded DDX3Y
Gong et al. show that during the early stages of lymphoma development, loss-of-function mutations in the RNA helicase DDX3X allow human B cells to tolerate the forced expression of MYC. In contrast, established tumors restore DDX3 helicase activity by ectopic expression of the Y-chromosome-encoded homolog DDX3Y.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Animals</subject><subject>B-Lymphocytes - enzymology</subject><subject>B-Lymphocytes - pathology</subject><subject>Burkitt lymphoma</subject><subject>Cell Line, Tumor</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DDX3X</subject><subject>DEAD-box RNA Helicases - genetics</subject><subject>DEAD-box RNA Helicases - metabolism</subject><subject>Endoplasmic Reticulum Stress</subject><subject>Female</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>germinal center</subject><subject>Humans</subject><subject>Loss of Function Mutation</subject><subject>Lymphoma, B-Cell - enzymology</subject><subject>Lymphoma, B-Cell - genetics</subject><subject>Lymphoma, B-Cell - pathology</subject><subject>Male</subject><subject>Mice, Transgenic</subject><subject>Middle Aged</subject><subject>Minor Histocompatibility Antigens - genetics</subject><subject>Minor Histocompatibility Antigens - metabolism</subject><subject>MYC</subject><subject>Neoplasm Proteins - biosynthesis</subject><subject>Neoplasm Proteins - genetics</subject><subject>Protein Biosynthesis</subject><subject>Proteome</subject><subject>Proteostasis</subject><subject>proteotoxic stress</subject><subject>Proto-Oncogene Proteins c-myc - genetics</subject><subject>Proto-Oncogene Proteins c-myc - metabolism</subject><subject>RNA helicase</subject><subject>translation</subject><subject>Young Adult</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtP6zAQhS0E4v0P0JWXbBI8iWMnmyuhcnlIPCQeEqwsx5lQV07Sa6eV-u8xtLBkNSPNOXN0PkJOgKXAQJzN0m5wBl2asQxSJlPGYYvsA6tkwkHw7c2eSVHskYMQZowBL8pql-zlnOeyzOU-cU_4f4H9aLWjtl-iD0ibVfD4vnB6tENPh5aOU6SP9-d0is4aHTDQi4vX_JXqvvna3mirjXV21GO83b1NksbbJfbUrbr5dOj0O_YYbDgiO612AY8385C8XP57nlwntw9XN5Pz28RwVo5JIRjnAFkpoRRZVYERwgBUda2hRV6jrrVoWFXITEojdJVrATUXZct4WRvMD8np-u_cD7FdGFVnQ0TldI_DIqisEDGikCyPUr6WGj-EWLtVc2877VcKmPrkrGZqzVl9clZMqsg52v5sEhZ1h82P6RtsFPxdCzD2XFr0KhiLvcHGejSjagb7e8IHJxOQFg</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Gong, Chun</creator><creator>Krupka, Joanna A.</creator><creator>Gao, Jie</creator><creator>Grigoropoulos, Nicholas F.</creator><creator>Giotopoulos, George</creator><creator>Asby, Ryan</creator><creator>Screen, Michael</creator><creator>Usheva, Zelvera</creator><creator>Cucco, Francesco</creator><creator>Barrans, Sharon</creator><creator>Painter, Daniel</creator><creator>Zaini, Nurmahirah Binte Mohammed</creator><creator>Haupl, Björn</creator><creator>Bornelöv, Susanne</creator><creator>Ruiz De Los Mozos, Igor</creator><creator>Meng, Wei</creator><creator>Zhou, Peixun</creator><creator>Blain, Alex E.</creator><creator>Forde, Sorcha</creator><creator>Matthews, Jamie</creator><creator>Khim Tan, Michelle Guet</creator><creator>Burke, G.A. Amos</creator><creator>Sze, Siu Kwan</creator><creator>Beer, Philip</creator><creator>Burton, Cathy</creator><creator>Campbell, Peter</creator><creator>Rand, Vikki</creator><creator>Turner, Suzanne D.</creator><creator>Ule, Jernej</creator><creator>Roman, Eve</creator><creator>Tooze, Reuben</creator><creator>Oellerich, Thomas</creator><creator>Huntly, Brian J.</creator><creator>Turner, Martin</creator><creator>Du, Ming-Qing</creator><creator>Samarajiwa, Shamith A.</creator><creator>Hodson, Daniel J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20211007</creationdate><title>Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis</title><author>Gong, Chun ; Krupka, Joanna A. ; Gao, Jie ; Grigoropoulos, Nicholas F. ; Giotopoulos, George ; Asby, Ryan ; Screen, Michael ; Usheva, Zelvera ; Cucco, Francesco ; Barrans, Sharon ; Painter, Daniel ; Zaini, Nurmahirah Binte Mohammed ; Haupl, Björn ; Bornelöv, Susanne ; Ruiz De Los Mozos, Igor ; Meng, Wei ; Zhou, Peixun ; Blain, Alex E. ; Forde, Sorcha ; Matthews, Jamie ; Khim Tan, Michelle Guet ; Burke, G.A. Amos ; Sze, Siu Kwan ; Beer, Philip ; Burton, Cathy ; Campbell, Peter ; Rand, Vikki ; Turner, Suzanne D. ; Ule, Jernej ; Roman, Eve ; Tooze, Reuben ; Oellerich, Thomas ; Huntly, Brian J. ; Turner, Martin ; Du, Ming-Qing ; Samarajiwa, Shamith A. ; Hodson, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-56044112871862991c66c119bba1fe4beaba6d0957277c6a93a61b468f048bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Animals</topic><topic>B-Lymphocytes - enzymology</topic><topic>B-Lymphocytes - pathology</topic><topic>Burkitt lymphoma</topic><topic>Cell Line, Tumor</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DDX3X</topic><topic>DEAD-box RNA Helicases - genetics</topic><topic>DEAD-box RNA Helicases - metabolism</topic><topic>Endoplasmic Reticulum Stress</topic><topic>Female</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>germinal center</topic><topic>Humans</topic><topic>Loss of Function Mutation</topic><topic>Lymphoma, B-Cell - enzymology</topic><topic>Lymphoma, B-Cell - genetics</topic><topic>Lymphoma, B-Cell - pathology</topic><topic>Male</topic><topic>Mice, Transgenic</topic><topic>Middle Aged</topic><topic>Minor Histocompatibility Antigens - genetics</topic><topic>Minor Histocompatibility Antigens - metabolism</topic><topic>MYC</topic><topic>Neoplasm Proteins - biosynthesis</topic><topic>Neoplasm Proteins - genetics</topic><topic>Protein Biosynthesis</topic><topic>Proteome</topic><topic>Proteostasis</topic><topic>proteotoxic stress</topic><topic>Proto-Oncogene Proteins c-myc - genetics</topic><topic>Proto-Oncogene Proteins c-myc - metabolism</topic><topic>RNA helicase</topic><topic>translation</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Chun</creatorcontrib><creatorcontrib>Krupka, Joanna A.</creatorcontrib><creatorcontrib>Gao, Jie</creatorcontrib><creatorcontrib>Grigoropoulos, Nicholas F.</creatorcontrib><creatorcontrib>Giotopoulos, George</creatorcontrib><creatorcontrib>Asby, Ryan</creatorcontrib><creatorcontrib>Screen, Michael</creatorcontrib><creatorcontrib>Usheva, Zelvera</creatorcontrib><creatorcontrib>Cucco, Francesco</creatorcontrib><creatorcontrib>Barrans, Sharon</creatorcontrib><creatorcontrib>Painter, Daniel</creatorcontrib><creatorcontrib>Zaini, Nurmahirah Binte Mohammed</creatorcontrib><creatorcontrib>Haupl, Björn</creatorcontrib><creatorcontrib>Bornelöv, Susanne</creatorcontrib><creatorcontrib>Ruiz De Los Mozos, Igor</creatorcontrib><creatorcontrib>Meng, Wei</creatorcontrib><creatorcontrib>Zhou, Peixun</creatorcontrib><creatorcontrib>Blain, Alex E.</creatorcontrib><creatorcontrib>Forde, Sorcha</creatorcontrib><creatorcontrib>Matthews, Jamie</creatorcontrib><creatorcontrib>Khim Tan, Michelle Guet</creatorcontrib><creatorcontrib>Burke, G.A. Amos</creatorcontrib><creatorcontrib>Sze, Siu Kwan</creatorcontrib><creatorcontrib>Beer, Philip</creatorcontrib><creatorcontrib>Burton, Cathy</creatorcontrib><creatorcontrib>Campbell, Peter</creatorcontrib><creatorcontrib>Rand, Vikki</creatorcontrib><creatorcontrib>Turner, Suzanne D.</creatorcontrib><creatorcontrib>Ule, Jernej</creatorcontrib><creatorcontrib>Roman, Eve</creatorcontrib><creatorcontrib>Tooze, Reuben</creatorcontrib><creatorcontrib>Oellerich, Thomas</creatorcontrib><creatorcontrib>Huntly, Brian J.</creatorcontrib><creatorcontrib>Turner, Martin</creatorcontrib><creatorcontrib>Du, Ming-Qing</creatorcontrib><creatorcontrib>Samarajiwa, Shamith A.</creatorcontrib><creatorcontrib>Hodson, Daniel J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Chun</au><au>Krupka, Joanna A.</au><au>Gao, Jie</au><au>Grigoropoulos, Nicholas F.</au><au>Giotopoulos, George</au><au>Asby, Ryan</au><au>Screen, Michael</au><au>Usheva, Zelvera</au><au>Cucco, Francesco</au><au>Barrans, Sharon</au><au>Painter, Daniel</au><au>Zaini, Nurmahirah Binte Mohammed</au><au>Haupl, Björn</au><au>Bornelöv, Susanne</au><au>Ruiz De Los Mozos, Igor</au><au>Meng, Wei</au><au>Zhou, Peixun</au><au>Blain, Alex E.</au><au>Forde, Sorcha</au><au>Matthews, Jamie</au><au>Khim Tan, Michelle Guet</au><au>Burke, G.A. Amos</au><au>Sze, Siu Kwan</au><au>Beer, Philip</au><au>Burton, Cathy</au><au>Campbell, Peter</au><au>Rand, Vikki</au><au>Turner, Suzanne D.</au><au>Ule, Jernej</au><au>Roman, Eve</au><au>Tooze, Reuben</au><au>Oellerich, Thomas</au><au>Huntly, Brian J.</au><au>Turner, Martin</au><au>Du, Ming-Qing</au><au>Samarajiwa, Shamith A.</au><au>Hodson, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-10-07</date><risdate>2021</risdate><volume>81</volume><issue>19</issue><spage>4059</spage><epage>4075.e11</epage><pages>4059-4075.e11</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
[Display omitted]
•Loss-of-function mutations of DDX3X are frequent in MYC-driven B cell lymphomas•DDX3X promotes translation of mRNAs encoding the core protein synthesis machinery•Loss of DDX3X buffers MYC-driven global protein synthesis and proteotoxic stress•DDX3X loss is later rescued by ectopic expression of Y-chromosome-encoded DDX3Y
Gong et al. show that during the early stages of lymphoma development, loss-of-function mutations in the RNA helicase DDX3X allow human B cells to tolerate the forced expression of MYC. In contrast, established tumors restore DDX3 helicase activity by ectopic expression of the Y-chromosome-encoded homolog DDX3Y.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>34437837</pmid><doi>10.1016/j.molcel.2021.07.041</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2021-10, Vol.81 (19), p.4059-4075.e11 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_2566045703 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Adolescent Adult Aged Aged, 80 and over Animals B-Lymphocytes - enzymology B-Lymphocytes - pathology Burkitt lymphoma Cell Line, Tumor Child Child, Preschool DDX3X DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism Endoplasmic Reticulum Stress Female Gene Expression Regulation, Enzymologic Gene Expression Regulation, Neoplastic germinal center Humans Loss of Function Mutation Lymphoma, B-Cell - enzymology Lymphoma, B-Cell - genetics Lymphoma, B-Cell - pathology Male Mice, Transgenic Middle Aged Minor Histocompatibility Antigens - genetics Minor Histocompatibility Antigens - metabolism MYC Neoplasm Proteins - biosynthesis Neoplasm Proteins - genetics Protein Biosynthesis Proteome Proteostasis proteotoxic stress Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism RNA helicase translation Young Adult |
title | Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20inverse%20dysregulation%20of%20the%20RNA%20helicases%20DDX3X%20and%20DDX3Y%20facilitates%20MYC-driven%20lymphomagenesis&rft.jtitle=Molecular%20cell&rft.au=Gong,%20Chun&rft.date=2021-10-07&rft.volume=81&rft.issue=19&rft.spage=4059&rft.epage=4075.e11&rft.pages=4059-4075.e11&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.07.041&rft_dat=%3Cproquest_cross%3E2566045703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2566045703&rft_id=info:pmid/34437837&rft_els_id=S1097276521006250&rfr_iscdi=true |