Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting
[Display omitted] The development of available dual-function electrocatalysts is of great significance to the effective storage of excess electricity. Here, we obtained a three-dimensional Co(OH)2 nanosheet with high surface area on nickel foam (Co(OH)2/NF) via conventional hydrothermal. NiFe-coated...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2022-01, Vol.606, p.873-883 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 883 |
---|---|
container_issue | |
container_start_page | 873 |
container_title | Journal of colloid and interface science |
container_volume | 606 |
creator | Cheng, Chen Liu, Fengyu Zhong, Dazhong Hao, Genyan Liu, Guang Li, Jinping Zhao, Qiang |
description | [Display omitted]
The development of available dual-function electrocatalysts is of great significance to the effective storage of excess electricity. Here, we obtained a three-dimensional Co(OH)2 nanosheet with high surface area on nickel foam (Co(OH)2/NF) via conventional hydrothermal. NiFe-coated Co(OH)2 nanosheet array (NiFe@Co(OH)2 NSAs/NF) was further constructed by electrodeposition for water splitting. By optimizing and regulating the deposition time, NiFe@Co(OH)2 NSAs/NF with a deposition time of 500 s (NiFe-500@Co(OH)2 NSAs/NF) only needs 98 mV of overpotential and can be stabilized for 100 h for hydrogen evolution at 10 mA cm−2 due to the rich density active components for NiFe alloy/oxyhydroxide layer and interaction with Co(OH)2 nanosheets. Thanks to the excellent 3D nanosheet array structure and the close integration between Co(OH)2 and the upper layer NiFe, NiFe@Co(OH)2 NSAs/NF with a deposition time of 200 s (NiFe-200@Co(OH)2 NSAs/NF) can provide 10 mA cm−2 with only 204 mV and maintain constant catalysis within 100 h. Therefore, the constructed NiFe@Co(OH)2 NSAs/NF (500||200) double-electrode cell for water splitting requires only 1.58 V drive potential and can maintain 24 h durability at 10 mA cm−2. The design of the catalyst opens up new ideas for the large-scale application of transition metals in water splitting. |
doi_str_mv | 10.1016/j.jcis.2021.08.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564495013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979721012480</els_id><sourcerecordid>2564495013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-adb01506b8a84504e6e9a4e114823ac87b244c5df7b58688162beba8290ac5463</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEkvhBTj5yCXp2IkTR-KCKlqQqvZSztbEmTReeeNge9vmZXhWstpK3DjNYf7vH40-xj4LKAWI5nJf7q1LpQQpStAlSHjDdgI6VbQCqrdsB9um6Nqufc8-pLQHEEKpbsf-PEyRqBjcgebkwoyeJ_JjkY7LEmJ28yO3mNGvKfNnlyd-566Jo_dhvQwv67QOMby4gfgrQAMPM5_c47RVxBEtcRt69Jn_i844hzQRZY4x4srHEHl4ori18mfMFHlavMun4x_ZuxF9ok-v84L9uv7-cPWjuL2_-Xn17bawVVXlAocehIKm16hrBTU11GFNQtRaVmh128u6tmoY217pRmvRyJ561LIDtKpuqgv25dy7xPD7SCmbg0uWvMeZwjEZqZq67hSIaovKc9TGkFKk0SzRHTCuRoA5yTB7c5JhTjIMaLPJ2KCvZ4i2J54cRZOso9nS4CLZbIbg_of_BUxTl8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564495013</pqid></control><display><type>article</type><title>Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting</title><source>Access via ScienceDirect (Elsevier)</source><creator>Cheng, Chen ; Liu, Fengyu ; Zhong, Dazhong ; Hao, Genyan ; Liu, Guang ; Li, Jinping ; Zhao, Qiang</creator><creatorcontrib>Cheng, Chen ; Liu, Fengyu ; Zhong, Dazhong ; Hao, Genyan ; Liu, Guang ; Li, Jinping ; Zhao, Qiang</creatorcontrib><description>[Display omitted]
The development of available dual-function electrocatalysts is of great significance to the effective storage of excess electricity. Here, we obtained a three-dimensional Co(OH)2 nanosheet with high surface area on nickel foam (Co(OH)2/NF) via conventional hydrothermal. NiFe-coated Co(OH)2 nanosheet array (NiFe@Co(OH)2 NSAs/NF) was further constructed by electrodeposition for water splitting. By optimizing and regulating the deposition time, NiFe@Co(OH)2 NSAs/NF with a deposition time of 500 s (NiFe-500@Co(OH)2 NSAs/NF) only needs 98 mV of overpotential and can be stabilized for 100 h for hydrogen evolution at 10 mA cm−2 due to the rich density active components for NiFe alloy/oxyhydroxide layer and interaction with Co(OH)2 nanosheets. Thanks to the excellent 3D nanosheet array structure and the close integration between Co(OH)2 and the upper layer NiFe, NiFe@Co(OH)2 NSAs/NF with a deposition time of 200 s (NiFe-200@Co(OH)2 NSAs/NF) can provide 10 mA cm−2 with only 204 mV and maintain constant catalysis within 100 h. Therefore, the constructed NiFe@Co(OH)2 NSAs/NF (500||200) double-electrode cell for water splitting requires only 1.58 V drive potential and can maintain 24 h durability at 10 mA cm−2. The design of the catalyst opens up new ideas for the large-scale application of transition metals in water splitting.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2021.08.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Electrocatalysis ; Multi-element catalyst ; Nanosheet array ; Nickel iron oxide ; Synergistic effect ; Water splitting</subject><ispartof>Journal of colloid and interface science, 2022-01, Vol.606, p.873-883</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-adb01506b8a84504e6e9a4e114823ac87b244c5df7b58688162beba8290ac5463</citedby><cites>FETCH-LOGICAL-c333t-adb01506b8a84504e6e9a4e114823ac87b244c5df7b58688162beba8290ac5463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2021.08.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Cheng, Chen</creatorcontrib><creatorcontrib>Liu, Fengyu</creatorcontrib><creatorcontrib>Zhong, Dazhong</creatorcontrib><creatorcontrib>Hao, Genyan</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><title>Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting</title><title>Journal of colloid and interface science</title><description>[Display omitted]
The development of available dual-function electrocatalysts is of great significance to the effective storage of excess electricity. Here, we obtained a three-dimensional Co(OH)2 nanosheet with high surface area on nickel foam (Co(OH)2/NF) via conventional hydrothermal. NiFe-coated Co(OH)2 nanosheet array (NiFe@Co(OH)2 NSAs/NF) was further constructed by electrodeposition for water splitting. By optimizing and regulating the deposition time, NiFe@Co(OH)2 NSAs/NF with a deposition time of 500 s (NiFe-500@Co(OH)2 NSAs/NF) only needs 98 mV of overpotential and can be stabilized for 100 h for hydrogen evolution at 10 mA cm−2 due to the rich density active components for NiFe alloy/oxyhydroxide layer and interaction with Co(OH)2 nanosheets. Thanks to the excellent 3D nanosheet array structure and the close integration between Co(OH)2 and the upper layer NiFe, NiFe@Co(OH)2 NSAs/NF with a deposition time of 200 s (NiFe-200@Co(OH)2 NSAs/NF) can provide 10 mA cm−2 with only 204 mV and maintain constant catalysis within 100 h. Therefore, the constructed NiFe@Co(OH)2 NSAs/NF (500||200) double-electrode cell for water splitting requires only 1.58 V drive potential and can maintain 24 h durability at 10 mA cm−2. The design of the catalyst opens up new ideas for the large-scale application of transition metals in water splitting.</description><subject>Electrocatalysis</subject><subject>Multi-element catalyst</subject><subject>Nanosheet array</subject><subject>Nickel iron oxide</subject><subject>Synergistic effect</subject><subject>Water splitting</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEkvhBTj5yCXp2IkTR-KCKlqQqvZSztbEmTReeeNge9vmZXhWstpK3DjNYf7vH40-xj4LKAWI5nJf7q1LpQQpStAlSHjDdgI6VbQCqrdsB9um6Nqufc8-pLQHEEKpbsf-PEyRqBjcgebkwoyeJ_JjkY7LEmJ28yO3mNGvKfNnlyd-566Jo_dhvQwv67QOMby4gfgrQAMPM5_c47RVxBEtcRt69Jn_i844hzQRZY4x4srHEHl4ori18mfMFHlavMun4x_ZuxF9ok-v84L9uv7-cPWjuL2_-Xn17bawVVXlAocehIKm16hrBTU11GFNQtRaVmh128u6tmoY217pRmvRyJ561LIDtKpuqgv25dy7xPD7SCmbg0uWvMeZwjEZqZq67hSIaovKc9TGkFKk0SzRHTCuRoA5yTB7c5JhTjIMaLPJ2KCvZ4i2J54cRZOso9nS4CLZbIbg_of_BUxTl8w</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Cheng, Chen</creator><creator>Liu, Fengyu</creator><creator>Zhong, Dazhong</creator><creator>Hao, Genyan</creator><creator>Liu, Guang</creator><creator>Li, Jinping</creator><creator>Zhao, Qiang</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220115</creationdate><title>Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting</title><author>Cheng, Chen ; Liu, Fengyu ; Zhong, Dazhong ; Hao, Genyan ; Liu, Guang ; Li, Jinping ; Zhao, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-adb01506b8a84504e6e9a4e114823ac87b244c5df7b58688162beba8290ac5463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electrocatalysis</topic><topic>Multi-element catalyst</topic><topic>Nanosheet array</topic><topic>Nickel iron oxide</topic><topic>Synergistic effect</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chen</creatorcontrib><creatorcontrib>Liu, Fengyu</creatorcontrib><creatorcontrib>Zhong, Dazhong</creatorcontrib><creatorcontrib>Hao, Genyan</creatorcontrib><creatorcontrib>Liu, Guang</creatorcontrib><creatorcontrib>Li, Jinping</creatorcontrib><creatorcontrib>Zhao, Qiang</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chen</au><au>Liu, Fengyu</au><au>Zhong, Dazhong</au><au>Hao, Genyan</au><au>Liu, Guang</au><au>Li, Jinping</au><au>Zhao, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>606</volume><spage>873</spage><epage>883</epage><pages>873-883</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
The development of available dual-function electrocatalysts is of great significance to the effective storage of excess electricity. Here, we obtained a three-dimensional Co(OH)2 nanosheet with high surface area on nickel foam (Co(OH)2/NF) via conventional hydrothermal. NiFe-coated Co(OH)2 nanosheet array (NiFe@Co(OH)2 NSAs/NF) was further constructed by electrodeposition for water splitting. By optimizing and regulating the deposition time, NiFe@Co(OH)2 NSAs/NF with a deposition time of 500 s (NiFe-500@Co(OH)2 NSAs/NF) only needs 98 mV of overpotential and can be stabilized for 100 h for hydrogen evolution at 10 mA cm−2 due to the rich density active components for NiFe alloy/oxyhydroxide layer and interaction with Co(OH)2 nanosheets. Thanks to the excellent 3D nanosheet array structure and the close integration between Co(OH)2 and the upper layer NiFe, NiFe@Co(OH)2 NSAs/NF with a deposition time of 200 s (NiFe-200@Co(OH)2 NSAs/NF) can provide 10 mA cm−2 with only 204 mV and maintain constant catalysis within 100 h. Therefore, the constructed NiFe@Co(OH)2 NSAs/NF (500||200) double-electrode cell for water splitting requires only 1.58 V drive potential and can maintain 24 h durability at 10 mA cm−2. The design of the catalyst opens up new ideas for the large-scale application of transition metals in water splitting.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2021.08.020</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2022-01, Vol.606, p.873-883 |
issn | 0021-9797 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_2564495013 |
source | Access via ScienceDirect (Elsevier) |
subjects | Electrocatalysis Multi-element catalyst Nanosheet array Nickel iron oxide Synergistic effect Water splitting |
title | Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A32%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20self-supporting%20catalyst%20with%20NiFe%20alloy/oxyhydroxide%20supported%20on%20high-surface%20cobalt%20hydroxide%20nanosheet%20array%20for%20overall%20water%20splitting&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Cheng,%20Chen&rft.date=2022-01-15&rft.volume=606&rft.spage=873&rft.epage=883&rft.pages=873-883&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2021.08.020&rft_dat=%3Cproquest_cross%3E2564495013%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564495013&rft_id=info:pmid/&rft_els_id=S0021979721012480&rfr_iscdi=true |