Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells
To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite. A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and...
Gespeichert in:
Veröffentlicht in: | Nanomedicine (London, England) England), 2021-09, Vol.16 (22), p.1963-1982 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1982 |
---|---|
container_issue | 22 |
container_start_page | 1963 |
container_title | Nanomedicine (London, England) |
container_volume | 16 |
creator | Rawat, Sonali Jain, Krishan Gopal Gupta, Deepika Raghav, Pawan Kumar Chaudhuri, Rituparna Pinky Shakeel, Adeeba Arora, Varun Sharma, Harshita Debnath, Debika Kalluri, Ankarao Agrawal, Ashwini K. Jassal, Manjeet Dinda, Amit K. Patra, Prabir Mohanty, Sujata |
description | To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite.
A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation.
PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca
influx and dopamine secretion.
Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine. |
doi_str_mv | 10.2217/nnm-2021-0121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2564489888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2564489888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5055005a624d765246ccde2a620b40c3091b5fcd777e9af82d44bae6e3963b1a3</originalsourceid><addsrcrecordid>eNp1kM1PxCAQxYnRxHX16J2jlypQaOnRbPxKNvGiZ0LpkGIKVGgP-9_bWq-eZl7ym8l7D6FbSu4Zo_VDCL5ghNGCUEbP0I7WXBZVU5Xnv3tZCCmbS3SV8xchQjJKdsi8JD32EAAHHaJ1LSRsoh9jdhNkbGPCEHodDHQ4wJxi0APunLWQIExOTy4GHC3uZ68D9pAhmP7kFyhP4LGBYcjX6MLqIcPN39yjz-enj8NrcXx_eTs8HgtTimYqBBFi8aUrxru6EoxXxnTAFk1aTkxJGtoKa7q6rqHRVrKO81ZDBeUSsaW63KO77e-Y4vcMeVLe5dWBDhDnrJioOJeNlHJBiw01KeacwKoxOa_TSVGi1jLVUqZay1RrmQvfbLydpzlBNm7JCWpTHjpnXIB_bn8A6gx9Mw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2564489888</pqid></control><display><type>article</type><title>Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells</title><source>PubMed Central</source><creator>Rawat, Sonali ; Jain, Krishan Gopal ; Gupta, Deepika ; Raghav, Pawan Kumar ; Chaudhuri, Rituparna ; Pinky ; Shakeel, Adeeba ; Arora, Varun ; Sharma, Harshita ; Debnath, Debika ; Kalluri, Ankarao ; Agrawal, Ashwini K. ; Jassal, Manjeet ; Dinda, Amit K. ; Patra, Prabir ; Mohanty, Sujata</creator><creatorcontrib>Rawat, Sonali ; Jain, Krishan Gopal ; Gupta, Deepika ; Raghav, Pawan Kumar ; Chaudhuri, Rituparna ; Pinky ; Shakeel, Adeeba ; Arora, Varun ; Sharma, Harshita ; Debnath, Debika ; Kalluri, Ankarao ; Agrawal, Ashwini K. ; Jassal, Manjeet ; Dinda, Amit K. ; Patra, Prabir ; Mohanty, Sujata</creatorcontrib><description>To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite.
A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation.
PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca
influx and dopamine secretion.
Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.</description><identifier>ISSN: 1743-5889</identifier><identifier>EISSN: 1748-6963</identifier><identifier>DOI: 10.2217/nnm-2021-0121</identifier><language>eng</language><publisher>Future Medicine Ltd</publisher><subject>dopaminergic neurons ; electrospinning ; graphene ; mesenchymal stem cells ; nanofibers ; neuronal differentiation</subject><ispartof>Nanomedicine (London, England), 2021-09, Vol.16 (22), p.1963-1982</ispartof><rights>2021 Future Medicine Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5055005a624d765246ccde2a620b40c3091b5fcd777e9af82d44bae6e3963b1a3</citedby><cites>FETCH-LOGICAL-c359t-5055005a624d765246ccde2a620b40c3091b5fcd777e9af82d44bae6e3963b1a3</cites><orcidid>0000-0002-7450-5007 ; 0000-0001-6464-2959 ; 0000-0002-9898-5893 ; 0000-0002-0681-1635 ; 0000-0002-0047-4914 ; 0000-0001-5986-9294 ; 0000-0003-1072-585X ; 0000-0002-6191-117X ; 0000-0001-7483-126X ; 0000-0002-2440-7134 ; 0000-0002-8222-4299 ; 0000-0002-2917-793X ; 0000-0001-6518-3547 ; 0000-0003-2965-0587 ; 0000-0002-1392-7038 ; 0000-0001-6783-5297</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rawat, Sonali</creatorcontrib><creatorcontrib>Jain, Krishan Gopal</creatorcontrib><creatorcontrib>Gupta, Deepika</creatorcontrib><creatorcontrib>Raghav, Pawan Kumar</creatorcontrib><creatorcontrib>Chaudhuri, Rituparna</creatorcontrib><creatorcontrib>Pinky</creatorcontrib><creatorcontrib>Shakeel, Adeeba</creatorcontrib><creatorcontrib>Arora, Varun</creatorcontrib><creatorcontrib>Sharma, Harshita</creatorcontrib><creatorcontrib>Debnath, Debika</creatorcontrib><creatorcontrib>Kalluri, Ankarao</creatorcontrib><creatorcontrib>Agrawal, Ashwini K.</creatorcontrib><creatorcontrib>Jassal, Manjeet</creatorcontrib><creatorcontrib>Dinda, Amit K.</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Mohanty, Sujata</creatorcontrib><title>Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells</title><title>Nanomedicine (London, England)</title><description>To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite.
A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation.
PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca
influx and dopamine secretion.
Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.</description><subject>dopaminergic neurons</subject><subject>electrospinning</subject><subject>graphene</subject><subject>mesenchymal stem cells</subject><subject>nanofibers</subject><subject>neuronal differentiation</subject><issn>1743-5889</issn><issn>1748-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PxCAQxYnRxHX16J2jlypQaOnRbPxKNvGiZ0LpkGIKVGgP-9_bWq-eZl7ym8l7D6FbSu4Zo_VDCL5ghNGCUEbP0I7WXBZVU5Xnv3tZCCmbS3SV8xchQjJKdsi8JD32EAAHHaJ1LSRsoh9jdhNkbGPCEHodDHQ4wJxi0APunLWQIExOTy4GHC3uZ68D9pAhmP7kFyhP4LGBYcjX6MLqIcPN39yjz-enj8NrcXx_eTs8HgtTimYqBBFi8aUrxru6EoxXxnTAFk1aTkxJGtoKa7q6rqHRVrKO81ZDBeUSsaW63KO77e-Y4vcMeVLe5dWBDhDnrJioOJeNlHJBiw01KeacwKoxOa_TSVGi1jLVUqZay1RrmQvfbLydpzlBNm7JCWpTHjpnXIB_bn8A6gx9Mw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Rawat, Sonali</creator><creator>Jain, Krishan Gopal</creator><creator>Gupta, Deepika</creator><creator>Raghav, Pawan Kumar</creator><creator>Chaudhuri, Rituparna</creator><creator>Pinky</creator><creator>Shakeel, Adeeba</creator><creator>Arora, Varun</creator><creator>Sharma, Harshita</creator><creator>Debnath, Debika</creator><creator>Kalluri, Ankarao</creator><creator>Agrawal, Ashwini K.</creator><creator>Jassal, Manjeet</creator><creator>Dinda, Amit K.</creator><creator>Patra, Prabir</creator><creator>Mohanty, Sujata</creator><general>Future Medicine Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7450-5007</orcidid><orcidid>https://orcid.org/0000-0001-6464-2959</orcidid><orcidid>https://orcid.org/0000-0002-9898-5893</orcidid><orcidid>https://orcid.org/0000-0002-0681-1635</orcidid><orcidid>https://orcid.org/0000-0002-0047-4914</orcidid><orcidid>https://orcid.org/0000-0001-5986-9294</orcidid><orcidid>https://orcid.org/0000-0003-1072-585X</orcidid><orcidid>https://orcid.org/0000-0002-6191-117X</orcidid><orcidid>https://orcid.org/0000-0001-7483-126X</orcidid><orcidid>https://orcid.org/0000-0002-2440-7134</orcidid><orcidid>https://orcid.org/0000-0002-8222-4299</orcidid><orcidid>https://orcid.org/0000-0002-2917-793X</orcidid><orcidid>https://orcid.org/0000-0001-6518-3547</orcidid><orcidid>https://orcid.org/0000-0003-2965-0587</orcidid><orcidid>https://orcid.org/0000-0002-1392-7038</orcidid><orcidid>https://orcid.org/0000-0001-6783-5297</orcidid></search><sort><creationdate>20210901</creationdate><title>Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells</title><author>Rawat, Sonali ; Jain, Krishan Gopal ; Gupta, Deepika ; Raghav, Pawan Kumar ; Chaudhuri, Rituparna ; Pinky ; Shakeel, Adeeba ; Arora, Varun ; Sharma, Harshita ; Debnath, Debika ; Kalluri, Ankarao ; Agrawal, Ashwini K. ; Jassal, Manjeet ; Dinda, Amit K. ; Patra, Prabir ; Mohanty, Sujata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5055005a624d765246ccde2a620b40c3091b5fcd777e9af82d44bae6e3963b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>dopaminergic neurons</topic><topic>electrospinning</topic><topic>graphene</topic><topic>mesenchymal stem cells</topic><topic>nanofibers</topic><topic>neuronal differentiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawat, Sonali</creatorcontrib><creatorcontrib>Jain, Krishan Gopal</creatorcontrib><creatorcontrib>Gupta, Deepika</creatorcontrib><creatorcontrib>Raghav, Pawan Kumar</creatorcontrib><creatorcontrib>Chaudhuri, Rituparna</creatorcontrib><creatorcontrib>Pinky</creatorcontrib><creatorcontrib>Shakeel, Adeeba</creatorcontrib><creatorcontrib>Arora, Varun</creatorcontrib><creatorcontrib>Sharma, Harshita</creatorcontrib><creatorcontrib>Debnath, Debika</creatorcontrib><creatorcontrib>Kalluri, Ankarao</creatorcontrib><creatorcontrib>Agrawal, Ashwini K.</creatorcontrib><creatorcontrib>Jassal, Manjeet</creatorcontrib><creatorcontrib>Dinda, Amit K.</creatorcontrib><creatorcontrib>Patra, Prabir</creatorcontrib><creatorcontrib>Mohanty, Sujata</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawat, Sonali</au><au>Jain, Krishan Gopal</au><au>Gupta, Deepika</au><au>Raghav, Pawan Kumar</au><au>Chaudhuri, Rituparna</au><au>Pinky</au><au>Shakeel, Adeeba</au><au>Arora, Varun</au><au>Sharma, Harshita</au><au>Debnath, Debika</au><au>Kalluri, Ankarao</au><au>Agrawal, Ashwini K.</au><au>Jassal, Manjeet</au><au>Dinda, Amit K.</au><au>Patra, Prabir</au><au>Mohanty, Sujata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells</atitle><jtitle>Nanomedicine (London, England)</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>16</volume><issue>22</issue><spage>1963</spage><epage>1982</epage><pages>1963-1982</pages><issn>1743-5889</issn><eissn>1748-6963</eissn><abstract>To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite.
A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation.
PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca
influx and dopamine secretion.
Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.</abstract><pub>Future Medicine Ltd</pub><doi>10.2217/nnm-2021-0121</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7450-5007</orcidid><orcidid>https://orcid.org/0000-0001-6464-2959</orcidid><orcidid>https://orcid.org/0000-0002-9898-5893</orcidid><orcidid>https://orcid.org/0000-0002-0681-1635</orcidid><orcidid>https://orcid.org/0000-0002-0047-4914</orcidid><orcidid>https://orcid.org/0000-0001-5986-9294</orcidid><orcidid>https://orcid.org/0000-0003-1072-585X</orcidid><orcidid>https://orcid.org/0000-0002-6191-117X</orcidid><orcidid>https://orcid.org/0000-0001-7483-126X</orcidid><orcidid>https://orcid.org/0000-0002-2440-7134</orcidid><orcidid>https://orcid.org/0000-0002-8222-4299</orcidid><orcidid>https://orcid.org/0000-0002-2917-793X</orcidid><orcidid>https://orcid.org/0000-0001-6518-3547</orcidid><orcidid>https://orcid.org/0000-0003-2965-0587</orcidid><orcidid>https://orcid.org/0000-0002-1392-7038</orcidid><orcidid>https://orcid.org/0000-0001-6783-5297</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-5889 |
ispartof | Nanomedicine (London, England), 2021-09, Vol.16 (22), p.1963-1982 |
issn | 1743-5889 1748-6963 |
language | eng |
recordid | cdi_proquest_miscellaneous_2564489888 |
source | PubMed Central |
subjects | dopaminergic neurons electrospinning graphene mesenchymal stem cells nanofibers neuronal differentiation |
title | Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20nanofiber%20composites%20for%20enhanced%20neuronal%20differentiation%20of%20human%20mesenchymal%20stem%20cells&rft.jtitle=Nanomedicine%20(London,%20England)&rft.au=Rawat,%20Sonali&rft.date=2021-09-01&rft.volume=16&rft.issue=22&rft.spage=1963&rft.epage=1982&rft.pages=1963-1982&rft.issn=1743-5889&rft.eissn=1748-6963&rft_id=info:doi/10.2217/nnm-2021-0121&rft_dat=%3Cproquest_cross%3E2564489888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2564489888&rft_id=info:pmid/&rfr_iscdi=true |